Dynamic Calibration of a Thin-Film Heat-Flux Sensor in Time and Frequency Domains
Abstract
:1. Introduction
2. Design and Preparation of TFHFSs
2.1. Structural Design of the TFHFS
2.2. Simulation Analysis of Dynamic Characteristics of the TFHFS
2.3. Preparation of the TFHFS
3. Dynamic Calibration Experiment in Time Domain
3.1. Steady-State Calibration Experiment
3.1.1. Theoretical Modeling under Thermal Radiation Boundary
3.1.2. Steady-State Calibration Experiment
3.1.3. Experimental Modeling under a Thermal Radiation Boundary
3.2. Transient Calibration Experiment
3.2.1. Impulse Response Experiment of Surface Temperature and Heat Flux
3.2.2. Impulse Response Experiment of the TFHFS
4. Dynamic Calibration Experiment in Frequency Domain
5. Conclusions
- (1)
- In the finite element simulation, the thickness of the substrate affects the overshoot of the TFHFS’s dynamic response because the substrate is not an ideal semi-infinite body, which further affects the one-dimensional heat conduction of the heat flux.
- (2)
- The dynamic theoretical model of a TFHFS should take into consideration its temperature gradient principle and thermal radiation boundary condition.
- (3)
- The second-order transfer function model of the TFHFS identified by the QR decomposition method had a higher accuracy than the first-order thermal inertia model in steady-state calibration. In addition, the parameters of the second-order model () could be quantitatively transformed with steady-state time, .
- (4)
- In the transient calibration, the surface heat flux of the TFHFS was always ahead of the surface temperature, regardless of the rising or the falling edge of the impulse response. Moreover, the calibration results depended on the width of the pulse of the excitation signal.
- (5)
- In the frequency domain calibration, the periodic square excitation signal was more efficient than the sinusoidal excitation signal because of its harmonic characteristics.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
steady-state response time (the time to reach 95% of the steady-state value of the step response)/s | |
adjustment time (the time when the steady-state error of the step response of the second-order system enters the range of ±0.05 or ±0.02)/s | |
transient response time (the time to reach 100% of the peak value)/s | |
pulse width (duration of pulse heat-flux excitation signal)/s | |
natural frequency of second-order system/Hz | |
damping coefficient of the second-order system | |
peak time (the time required for the step response of a second-order system to reach the first peak value)/s | |
amplitude of the step response/V | |
response frequency/Hz |
References
- Luo, Y.; Yang, K.; Huang, W. Design and Fabrication of Gardon Fage Used in Shear Flow Filed of High Tempera-ture/Pressure. Sci. Technol. Eng. 2017, 17, 139–143. [Google Scholar]
- Yu, J.; Bu, X.Z.; Chu, X.G. Research and Design of Gardon Heat Flux Sensor. Adv. Mater. Res. 2014, 889–890, 833–837. [Google Scholar] [CrossRef]
- Fu, T.; Zong, A.; Tian, J.; Xin, C. Gardon gauge measurements of fast heat flux transients. Appl. Therm. Eng. 2016, 100, 501–507. [Google Scholar] [CrossRef]
- Kergerise, M.A.; Rufer, S.J. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer. Exp. Fluids 2016, 57, 130. [Google Scholar] [CrossRef]
- Roediger, T.; Knauss, H.; Gaisbauer, U.; Kraemer, E.; Jenkins, S.; von Wolfersdorf, J. Time-Resolved Heat Transfer Measurements on the Tip Wall of a Ribbed Channel Using a Novel Heat Flux Sensor: Part I—Sensor and Benchmarks. J. Turbomach. 2008, 130, 899–908. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, J.; Li, J.; Yang, S.; Ding, G.; Dong, W. Design, fabrication and characterization of high temperature thin film heat flux sensors. Microelectron. Eng. 2019, 217, 111128. [Google Scholar] [CrossRef]
- Fu, X.; Lin, Q.; Peng, Y.; Liu, J.; Yang, X.; Zhu, B.; Ouyang, J.; Zhang, Y.; Xu, L.; Chen, S. High-Temperature Heat Flux Sensor Based on Tungsten–Rhenium Thin-Film Thermocouple. IEEE Sens. J. 2020, 20, 10444–10452. [Google Scholar] [CrossRef]
- Wu, S.; Ye, F.; Guo, H.; Ma, C.F. Static and Dynamic Response of a Cu-Ni Thin Film Heat Flux Sensor. Adv. Mater. Res. 2014, 960–961, 304–307. [Google Scholar] [CrossRef]
- Knauss, H.; Roediger, T.; Bountin, D.A.; Smorodsky, B.V.; Maslov, A.A.; Srulijes, J.; Maslov, A. Novel Sensor for Fast Heat Flux Measurements. J. Spacecr. Rocket. 2009, 46, 255–265. [Google Scholar] [CrossRef]
- Huang, J. Measurement System Dynamics and ITS Application; National Defense Industry Press: Beijing, China, 2013. [Google Scholar]
- Cho, C.S.; Fralick, G.C.; Bhatt, H.D. Steady-State and Frequency Response of a Thin-Film Heat Flux Gauge. J. Spacecr. Rocket. 1997, 34, 792–798. [Google Scholar] [CrossRef]
- Guo, Y.; Kong, D.; Yang, F.; Gu, T. Dynamic characteristics analysis of an infrared thin skin calorimeter for explosive heat flux measurements. Measurement 2020, 154, 107477. [Google Scholar] [CrossRef]
- Yang, Y.-J.; Cai, J.; Zhang, X.-C.; Zhao, J. Study of TFTC Dynamic Character Calibration Technique. Int. J. Thermophys. 2011, 32, 1479–1484. [Google Scholar] [CrossRef]
- Mityakov, A.V.; Sapozhnikov, S.Z.; Mityakov, V.Y.; Snarskii, A.A.; Zhenirovsky, M.I.; Pyrhönen, J.J. Gradient heat flux sensors for high temperature environments. Sens. Actuators A Phys. 2012, 176, 1–9. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Y.; Zhang, P.; Habermeier, H.-U. Ultrafast transverse thermoelectric response in c-axis inclined epitaxial La0.5Sr0.5CoO3 thin films. Phys. Status Solidi Rapid Res. Lett. 2013, 7, 180–183. [Google Scholar] [CrossRef]
- Bianchi, C.; Rivenbark, W.C. Performance Management in Local Government: The Application of System Dynamics to Promote Data Use. Int. J. Public Adm. 2014, 37, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Immonen, A.; Levikari, S.; Gao, F.; Silventoinen, P.; Kuisma, M. Development of a Vertically Configured MEMS Heat Flux Sensor. IEEE Trans. Instrum. Meas. 2020, 70, 9502309. [Google Scholar] [CrossRef]
- Li, X.; Sun, D.; Liu, B.; Cui, Z.; Chen, Q.; He, G.; Hai, Z. High-Sensitive Thin Film Heat Flux Gauge With ITO/In2O3 Thermopile on Nickel Alloys for Turbine Blade Applications. IEEE Sens. J. 2021, 22, 3911–3919. [Google Scholar] [CrossRef]
- Shockner, T.; Chowdhury, T.A.; Putnam, S.A.; Ziskind, G. Analysis of time-dependent heat transfer with periodic excitation in mi-croscale systems. Appl. Therm. Eng. 2021, 196, 117225. [Google Scholar] [CrossRef]
- Ohalele, H.U.; Fulton, M.; Torvi, D.A.; Noble, S.D.; Batcheller, J.C. Effects of high heat flux exposures on tensile strength of fireFigurehters’ protective clothing. Fire Mater. 2022, 46, 719–731. [Google Scholar] [CrossRef]
- Nagaiah, N.R.; Kapat, J.S.; An, L.; Chow, L. Novel polymer derived ceramic-high temperature heat flux sensor for gas turbine environment. J. Phys. Conf. 2006, 34, 458–463. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Zhao, C.; Hao, X.; Dong, N.; Yin, W.; Pang, Z. Laser based method for dynamic calibration of thermocouples. Appl. Therm. Eng. 2020, 174, 115276. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, S. A Numerical Method for a Problem Occurring in Conduction of Heat Through a Solid and Other Ap-plications. In Computational and Experimental Methods in Mechanical Engineering; Springer: Singapore, 2022. [Google Scholar]
- Wang, Y.; Yu, L.; Zhang, P. Transverse laser induced thermoelectric voltage effect in tilted La0.5Sr0.5CoO3 thin films. Opt. Laser Technol. 2011, 43, 1462–1465. [Google Scholar] [CrossRef]
Research Institutions | Electrode Materials | Number of Thermocouples | Sensitivity/(mV/W/m2) | Operating Temperature/(°C) | Measurement Range/(kW/m2) |
---|---|---|---|---|---|
Beijing University of Technology | Cu/Ni | 9 | 1.01 × 10−5 | - | 0.7 |
Xiamen University | ITO/In2O3 | 40 | 6.1 × 10−5 | 888 | 236.4 |
Huazhong University of Science and Technology | W-5Re/W-26Re | 12 | 3.8 × 10−6 | 1000 | 1000 |
Western Michigan University | Pt/PtRh10 | 40 | 1.2 × 10−7 | 800 | 324 |
This study | Pt/PtRh13 | 72 | 2.0 × 10−5 | 880 | 3000 |
a | λ | x | |
---|---|---|---|
0.85 MW/m2 | 0.968 × 10−6 m2/s | 3.06 W/(m K) | 2.5 μm |
f(Hz) | Xin(f) | Xin(f)/Xin0(f) | Yout(f) | Yout(f)/Yout0(f) | H(f)/H0(f) |
---|---|---|---|---|---|
200 | 1.0066 | 1 | 0.2244 | 1 | 1 |
600 | 0.2014 | 0.2000 | 0.0414 | 0.1845 | 0.9225 |
1000 | 0.0748 | 0.0743 | 0.0150 | 0.0668 | 0.8990 |
1400 | 0.0389 | 0.0386 | 0.0072 | 0.0321 | 0.8316 |
1800 | 0.0227 | 0.0226 | 0.0039 | 0.0174 | 0.7670 |
2200 | 0.0145 | 0.0144 | 0.00267 | 0.0118 | 0.8194 |
2600 | 0.00986 | 0.00979 | 0.00171 | 0.00762 | 0.7783 |
3000 | 0.00705 | 0.00700 | 0.00116 | 0.05169 | 0.7384 |
3400 | 0.00504 | 0.00500 | 0.000756 | 0.00336 | 0.6720 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yin, J.; Wang, G.; Liang, H.; Zhang, C.; Huang, M.; Liu, Y.; Zhang, J. Dynamic Calibration of a Thin-Film Heat-Flux Sensor in Time and Frequency Domains. Sensors 2022, 22, 5294. https://doi.org/10.3390/s22145294
Li Z, Yin J, Wang G, Liang H, Zhang C, Huang M, Liu Y, Zhang J. Dynamic Calibration of a Thin-Film Heat-Flux Sensor in Time and Frequency Domains. Sensors. 2022; 22(14):5294. https://doi.org/10.3390/s22145294
Chicago/Turabian StyleLi, Zhiling, Jianping Yin, Gao Wang, Haijian Liang, Congchun Zhang, Manguo Huang, Yundong Liu, and Jie Zhang. 2022. "Dynamic Calibration of a Thin-Film Heat-Flux Sensor in Time and Frequency Domains" Sensors 22, no. 14: 5294. https://doi.org/10.3390/s22145294
APA StyleLi, Z., Yin, J., Wang, G., Liang, H., Zhang, C., Huang, M., Liu, Y., & Zhang, J. (2022). Dynamic Calibration of a Thin-Film Heat-Flux Sensor in Time and Frequency Domains. Sensors, 22(14), 5294. https://doi.org/10.3390/s22145294