Single VDGA-Based Mixed-Mode Universal Filter and Dual-Mode Quadrature Oscillator
Abstract
:1. Introduction
2. Overview of VDGA
3. Proposed Mixed-Mode Universal Biquadratic Filter
- ➣
- VM universal biquadratic filter: With iin = 0, all the five general voltage-mode biquadratic filter functions for this three-input two-output universal filter can be achieved as follows.
- With vin = vi3 (input voltage) and vi1 = vi2 = 0 (grounded), the following LP and BP filter responses are obtained from vo1 and vo2, respectively:
- With vin = vi2 and vi1 = vi3 = 0, the HP response is obtained from vo2, as given by:
- With vin = vi1 = vi2, and vi3 = 0, the BS response is obtained from vo2, as given by:
- With vin = vi1 = vi2 = −vi3, the AP response is also obtained from vo2, as given by:
- ➣
- CM universal biquadratic filter: The proposed circuit in Figure 3 can be changed into a CM universal biquad with vi1 = vi2 = vi3 = 0. The five generic current-mode biquad transfer functions realized by this configuration are expressed as follows.
- ➣
- TAM universal biquadratic filter: With vin = vi3, vi1 = vi2 = 0, and iin = 0, the TAM filter functions are:
- ➣
- TIM universal biquadratic filter: According to Figure 3, if vi1 = vi2 = vi3 = 0, the configuration is now operating in TIM universal filter. In this case, the two following TIM responses at voltage outputs vo1 and vo2 can simultaneously be obtained as:
4. Proposed Dual-Mode Quadrature Oscillator
5. Non-Ideal Analyses
5.1. Effect of Finite Tracking Errors
5.2. Effect of Parasitics
6. Simulation Results
6.1. Simulation Verifications of the Proposed Mixed-Mode Universal Filter
6.2. Simulation Verifications of the Proposed Dual-Mode Quadrature Oscillator
7. Experimental Results
7.1. Experimental Verifications of the Proposed Mixed-Mode Universal Filter
7.2. Experimental Verifications of the Proposed Dual-Mode Quadrature Oscillator
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Symbols and Nomenclatures
VDGA | voltage differencing gain amplifier |
VM | voltage-mode |
CM | current-mode |
TAM | trans-admittance-mode |
TIM | trans-impedance-mode |
LP | low-pass |
BP | band-pass |
HP | high-pass |
BS | band-stop |
AP | all-pass |
MUBF | mixed-mode universal biquadratic filter |
QO | quadrature oscillator |
DMQO | dual-mode QO |
OC | oscillation condition |
OF | oscillation frequency |
gm | transconductance gain of the VDGA |
β | voltage transfer gain of the VDGA |
µ | effective channel electronic mobility |
Cox | gate-oxide capacitance per unit area |
W | effective channel width |
L | effective channel length |
TV | transfer function of voltage-mode filter |
TI | transfer function of current-mode filter |
TY | transfer function of trans-admittance-mode filter |
TZ | transfer function of trans-impedance-mode filter |
ωo | natural angular frequency of biquadratic filter |
fo | natural frequency of biquadratic filter |
Q | quality factor of biquadratic filter |
ωosc | natural angular frequency of oscillator |
fosc | frequency of oscillator |
ej90° | Euler’s formula shows a 90° phase difference between two signals |
ej180° | Euler’s formula shows a 180° phase difference between two signals |
α | non-ideal transconductance gain |
δ | non-ideal voltage transfer gain |
εα | tracking error of transconductance gain |
εδ | tracking error of voltage transfer gain |
dBV | voltage decibel |
dBA | ampere decibel |
dBS | siemens decibel |
dBΩ | Ohm decibel |
dBm | mili decibel |
dBµ | micro decibel |
dBc | decibels relative to the carrier |
THD | total harmonic distortion |
SFDR | spurious-free dynamic range |
References
- Abuelma’atti, M.T. A novel mixed-mode current-controlled current-conveyor-based filter. Act. Passiv. Electron. Compon. 2003, 26, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.S.; Senani, R. New voltage-mode/current-mode universal biquad filter using unity-gain cells. Int. J. Electron. 2006, 93, 769–775. [Google Scholar] [CrossRef]
- Lee, C.N.; Chang, C.M. Single FDCCII-based mixed-mode biquad filter with eight outputs. AEU—Int. J. Electron. Commun. 2009, 63, 736–742. [Google Scholar] [CrossRef]
- Minaei, S.; Ibrahim, M.A. A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. Int. J. Circuit Theory Appl. 2009, 37, 793–810. [Google Scholar] [CrossRef]
- Chen, H.P.; Liao, Y.Z.; Lee, W.T. Tunable mixed-mode OTA-C universal filter. Analog Integr. Circuits Signal Process. 2009, 58, 135–141. [Google Scholar] [CrossRef]
- Horng, J.W. High-order current-mode and transimpedance-mode universal filters with multiple-inputs and two-outputs using MOCCIIs. Radioengineering 2009, 18, 537–543. [Google Scholar]
- Lee, C.N. Multiple-mode OTA-C universal biquad filters. Circuits Syst. Signal Process. 2010, 29, 263–274. [Google Scholar] [CrossRef]
- Yuce, E. Fully integrable mixed-mode universal biquad with specific application of the CFOA. AEU—Int. J. Electron. Commun. 2010, 64, 304–309. [Google Scholar] [CrossRef]
- Liao, W.B.; Gu, J.C. SIMO type universal mixed-mode biquadratic filter. Indian J. Eng. Mater. Sci. 2011, 18, 443–448. [Google Scholar]
- Pandey, N.; Paul, S.K. Mixed mode universal filter. J. Circuits Syst. Comput. 2013, 22, 1250064. [Google Scholar] [CrossRef]
- Yeşil, A.; Kaçar, F. Electronically tunable resistorless mixed mode biquad filters. Radioengineering 2013, 22, 1016–1025. [Google Scholar]
- Lee, C.N. Independently tunable mixed-mode universal biquad filter with versatile input/output functions. AEU—Int. J. Electron. Commun. 2016, 70, 1006–1019. [Google Scholar] [CrossRef]
- Lee, C.N. Mixed-mode universal biquadratic filter with no need of matching conditions. J. Circuits Syst. Comput. 2016, 25, 1650106. [Google Scholar] [CrossRef]
- Singh, D.; Afzal, N. Fully digitally programmable generalized mixed mode universal filter configuration. Circuits Syst. Signal Process. 2016, 35, 1457–1480. [Google Scholar] [CrossRef]
- Singh, D.; Afzal, N. Digitally programmable mixed mode universal filter using followers-a minimal realization. Analog Integr. Circuits Signal Process. 2016, 86, 289–298. [Google Scholar] [CrossRef]
- Pandey, R.; Pandey, N.; Singhal, N. Single VDTA based dual mode single input multioutput biquad filter. J. Eng. 2016, 2016, 1674343. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.P.; Yang, W.S. Electronically tunable current controlled current conveyor transconductance amplifier-based mixed-mode biquadratic filter with resistorless and grounded capacitors. Appl. Sci. 2017, 7, 244. [Google Scholar] [CrossRef] [Green Version]
- Parvizi, M.; Taghizadeh, A.; Mahmoodian, H.; Kozehkanani, Z.D. A low-power mixed-mode SIMO universal Gm–C filter. J. Circuits Syst. Comput. 2017, 26, 1750164. [Google Scholar] [CrossRef]
- Horng, J.W.; Wu, C.M.; Herencsar, N. Current-mode and transimpedance-mode universal biquadratic filter using two current conveyors. Indian J. Eng. Mater. Sci. 2017, 24, 461–468. [Google Scholar]
- Cini, U.; Aktan, M. Dual-mode OTA based biquadratic filter suitable for current-mode applications. AEU—Int. J. Electron. Commun. 2017, 80, 43–47. [Google Scholar] [CrossRef]
- Faseehuddin, M.; Sampe, J.; Shireen, S.; Ali, S.H.M. A novel mix-mode universal filter employing a single active element and minimum number of passive components. Inf. MIDEM 2017, 47, 211–221. [Google Scholar]
- Chaturvedi, B.; Mohan, J.; Kumar, A. A new versatile universal biquad configuration for emerging signal processing applications. J. Circuits Syst. Comput. 2018, 27, 1850196. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Ferri, G.; Stornelli, V. A new low-voltage low-power dual-mode VCII-based SIMO universal filter. Electronics 2019, 8, 765. [Google Scholar] [CrossRef] [Green Version]
- Albrni, M.A.; Faseehuddin, M.; Sampe, J.; Ali, S.H.M. Novel dual mode multifunction filter employing highly versatile VD-DXCC. Inf. MIDEM 2019, 49, 169–176. [Google Scholar] [CrossRef]
- Bhaskar, D.R.; Raj, A.; Kumar, P. Mixed-mode universal biquad filter using OTAs. J. Circuits Syst. Comput. 2020, 29, 2050162. [Google Scholar] [CrossRef]
- Albrni, M.I.A.; Mohammad, F.; Herencsar, N.; Sampe, J.; Ali, S.H.M. Novel electronically tunable biquadratic mixed-mode universal filter capable of operating in MISO and SIMO configurations. Inf. MIDEM 2020, 50, 189–203. [Google Scholar] [CrossRef]
- Mohammad, F.; Herencsar, N.; Albrni, M.A.; Sampe, J. Electronically tunable mixed mode universal filter employing a single active block and a minimum number of passive components. Appl. Sci. 2021, 11, 55. [Google Scholar] [CrossRef]
- Agrawal, D.; Maheshwari, S. High-performance electronically tunable analog filter using a single EX-CCCII. Circuits Syst. Signal Process. 2021, 40, 1127–1151. [Google Scholar] [CrossRef]
- Roongmuanpha, N.; Faseehuddin, M.; Herencsar, N.; Tangsrirat, W. Tunable mixed-mode voltage differencing buffered amplifier-based universal filter with independently high-Q factor controllability. Appl. Sci. 2021, 11, 9606. [Google Scholar] [CrossRef]
- Faseehuddin, M.; Herencsar, N.; Shireen, S.; Tangsrirat, W.; Md Ali, S.H. Voltage differencing buffered amplifier-based novel truly mixed-mode biquadratic universal filter with versatile input/output features. Appl. Sci. 2022, 12, 1229. [Google Scholar] [CrossRef]
- Unuk, T.; Yuce, E. A mixed-mode filter with DVCCs and grounded passive components only. AEU—Int. J. Electron. Commun. 2022, 144, 154063. [Google Scholar] [CrossRef]
- Horng, J.W.; Hou, C.L.; Chang, C.M.; Chou, H.P.; Lin, C.T.; Wen, Y.H. Quadrature oscillators with grounded capacitors and resistors using FDCCIIs. ETRI J. 2006, 28, 486–493. [Google Scholar] [CrossRef]
- Lahiri, A. Novel voltage/current-mode quadrature oscillator using current differencing transconductance amplifier. Analog Integr. Circuits Signal Process. 2009, 61, 199–203. [Google Scholar] [CrossRef]
- Maheshwari, S. Quadrature oscillator using grounded components with current and voltage outputs. IET Circuits Devices Syst. 2009, 3, 153–160. [Google Scholar] [CrossRef]
- Chen, H.P.; Wang, S.F.; Hsieh, M.Y. Tunable current-mode and voltage-mode quadrature oscillator using a DVCCTA. IEICE Electron. Express 2014, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tangsrirat, W. Dual-mode sinusoidal quadrature oscillator with single CCTA and grounded capacitors. Inf. MIDEM 2016, 46, 130–135. [Google Scholar]
- Srivastaya, M.; Prasad, D. VDCC based dual-mode sinusoidal quadrature oscillator with outputs at appropriate impedance. Theor. Appl. Electr. Eng. 2016, 14, 168–177. [Google Scholar] [CrossRef]
- Tangsrirat, W. Compact quadrature oscillator with voltage and current outputs using only single VDTA and grounded capacitors. Indian J. Pure Appl. Phys. 2017, 55, 254–260. [Google Scholar]
- Kumar, A.; Kushwaha, A.K.; Paul, S.K. Electronically tunable mixed mode quadrature oscillator using DX-MOCCII. J. Circuits Syst. Comput. 2021, 30, 2150006. [Google Scholar] [CrossRef]
- Channumsin, O.; Bhardwaj, K.; Srivastava, M.; Tangsrirat, W.; Petchmaneelumka, W. Single voltage differencing gain amplifier based dual-mode quadrature oscillator using only grounded passive components. Eng. Lett. 2022, 30, 255–260. [Google Scholar]
- Jaikla, W.; Siripruchyanun, M.; Lahiri, A. Resistorless dual-mode quadrature sinusoidal oscillator using a single active building block. Microelectron. J. 2011, 42, 135–140. [Google Scholar] [CrossRef]
- Jin, J.; Wang, C. Current-mode universal filter and quadrature oscillator using CDTAs. Turk. J. Electr. Eng. Comput. Sci. 2014, 22, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Jin, J. Resistorless active SIMO universal filter and four-phase quadrature oscillator. Arab. J. Sci. Eng. 2014, 39, 3887–3894. [Google Scholar] [CrossRef]
- Tuntrakool, S.; Kumngern, M.; Sotner, R.; Herencsar, N.; Suwanjan, P.; Jaikla, W. High Input Impedance Voltage-Mode Universal Filter and Its Modification as Quadrature Oscillator Using VDDDAs. Indian J. Pure Appl. Phys. 2017, 55, 324–332. [Google Scholar]
- Gupta, M.; Arora, T.S. Realization of current mode universal filter and a dual-mode single resistance controlled quadrature oscillator employing VDCC and only grounded passive elements. Adv. Electr. Electron. Eng. 2018, 15, 833–845. [Google Scholar] [CrossRef]
- Kumngern, M.; Khateb, F. Current-mode universal filter and quadrature oscillator using current controlled current follower transconductance amplifiers. Analog Integr. Circuits Signal Process. 2019, 100, 235–248. [Google Scholar] [CrossRef]
- Yucel, F.; Yuce, E. Supplementary CCII based second-order universal filter and quadrature oscillators. AEU—Int. J. Electron. Commun. 2020, 118, 153138. [Google Scholar] [CrossRef]
- Tangsrirat, W.; Pukkalanun, T.; Channumsin, O. Single VDGA-based dual-mode multifunction biquadratic filter and quadrature sinusoidal oscillator. Inf. MIDEM 2020, 50, 125–136. [Google Scholar] [CrossRef]
- Kumngern, M.; Khateb, F.; Kulej, T.; Psychalinos, C. Multiple-input universal filter and quadrature oscillator using multiple-input operational transconductance amplifiers. IEEE Access 2021, 9, 56253–56263. [Google Scholar] [CrossRef]
- Arora, T.S.; Gupta, M.; Gupta, S.N. An explicit output current-mode quadrature sinusoidal oscillator and a universal filter employing only grounded passive components-a minimal realization. Adv. Electr. Electron. Eng. 2021, 19, 258–271. [Google Scholar] [CrossRef]
- Satansup, J.; Tangsrirat, W. CMOS realization of voltage differencing gain amplifier (VDGA) and its application to biquad filter. Indian J. Eng. Mater. Sci. 2013, 20, 457–464. [Google Scholar]
- Taskiran, Z.G.C.; Sedef, H.; Anday, F. Voltage differencing gain amplifier-based nth-order low-pass voltage-mode filter. J. Circuit Syst. Comp. 2018, 27, 1850089. [Google Scholar] [CrossRef]
- Tangsrirat, W.; Pukkalanun, T.; Channumsin, O. Dual-mode multifunction filter realized with single voltage differencing gain amplifier (VDGA). Eng. Rev. 2021, 41, 1–14. [Google Scholar] [CrossRef]
- Channumsin, O.; Tangsrirat, W. Compact electronically tunable quadrature oscillator using single voltage differencing gain amplifier (VDGA) and all grounded passive elements. Turk. J. Electr. Eng. Comp. Sci. 2017, 25, 2686–2695. [Google Scholar] [CrossRef]
- Channumsin, O.; Tangsrirat, W. Voltage differencing gain amplifier-based sinusoidal quadrature oscillator using only two grounded capacitors. Recent Adv. Electr. Electron. Eng. 2019, 12, 439–444. [Google Scholar] [CrossRef]
- Tangsrirat, W.; Channumsin, O.; Pimpol, J. Electronically adjustable capacitance multiplier circuit with a single voltage differencing gain amplifier (VDGA). Inf. MIDEM 2019, 49, 211–217. [Google Scholar]
- Arbel, A.F.; Goldminz, L. Output stage for current-mode feedback amplifiers, theory and applications. Analog Integr. Circuits Signal Process. 1992, 2, 243–255. [Google Scholar] [CrossRef]
- National Semiconductor, LM13600: Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers. Available online: https://pdf1.alldatasheet.com/datasheet-pdf/view/8640/NSC/LM13600N.html (accessed on 31 May 2022).
- Analog Devices, AD844: 60 MHz, 2000 V/μs, Monolithic op amp with Quad Low Noise. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/AD844.pdf (accessed on 29 June 2022).
Ref./ Year | Working as Both MUBF and QO | No. of Active and Passive Used | MUBF | QO | Inbuilt Tunability | Technology | Supply Voltages (V) | Power Consumption (W) | Technology | Supply Voltages (V) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Filter Function Realized | Independent Tunable Q | Type (VM/CM) and Number of Outputs | Independent Tuning of OC and OF | ||||||||||||
VM | CM | TAM | TIM | ||||||||||||
[1]/2003 | N | DO-CCCII = 4, C = 3 | LP, BP, HP | LP, BP, HP | LP, BP, HP | LP, BP, HP | Y | -- | -- | Y | HF3 CMOS | ±5 | N/A | -- | -- |
[2]/2006 | N | UGC = 8, R = 7, C = 2 | all five | all five | -- | -- | N | -- | -- | N | 1.2 μm CMOS | ±5, −2.35, −3.54 | N/A | -- | -- |
[3]/2009 | N | FDCCII = 1, R = 3, C = 2 | all five | all five | BP, HP | all five | Y | -- | -- | N | TSMC 0.25 μm | ±1.25 | N/A | -- | -- |
[4]/2009 | N | DVCC = 3, Rmos = 3, C = 2 | LP, BP, BS | all five | all five | LP, BP | Y | -- | -- | N | TSMC 0.35 μm | ±1.5, 0.75 | 5.76 m | -- | -- |
[5]/2009 | N | OTA = 5, C = 2 | all five | all five | all five | all five | Y | -- | -- | Y | TSMC 0.35 μm | ±1.65, −1 | 30.95 m | -- | -- |
[6]/2009 | N | MO-CCII = 3, R = 3, C = 2 | -- | all five | -- | all five | N | -- | -- | N | TSMC 0.18 μm | ±1.25, −0.65 | N/A | -- | -- |
[7]/2010 | N | OTA = 3, DO-OTA = 1, MO-OTA = 1, C = 2 | all five | all five | all five | all five | N | -- | -- | Y | TSMC 0.25 μm | ±1.25 | N/A | -- | -- |
[8]/2010 | N | SCFOA = 1, R = 3, C = 2 | all five | LP, BP, BS | -- | -- | N | -- | -- | N | TSMC 0.25 μm | ±1.25 | 2.53 m | -- | -- |
[9]/2011 | N | DDCC = 3, R = 4, C = 2 | all five | all five | all five | all five | Y | -- | -- | N | TSMC 0.25 μm | ±1.25, +0.41 | N/A | -- | -- |
[10]/2013 | N | MO-CCCII = 4, C = 2 | all five | all five | all five | all five | N | -- | -- | Y | AMS 0.35 μm | ±1.25 | N/A | -- | -- |
[11]/2013 | N | VDTA = 2, C = 2 | all five | -- | all five | -- | Y | -- | -- | Y | TSMC 0.18 μm | ±1.5 | N/A | -- | -- |
[12]/2016 | N | FDCCII = 1, DDCC = 1, R = 6, C = 2 | all five | all five | all five | all five | Y | -- | -- | N | TSMC 0.18 μm | ±0.9, ±0.38 | N/A | AD844 | ±15 |
[13]/2016 | N | FDCCII = 2, R = 5, C = 2 | all five | all five | all five | all five | N | -- | -- | N | TSMC 0.18 μm | ±0.9 | N/A | -- | -- |
[14]/2016 | N | DP-CCII = 6, MO-CCII = 2, R = 4, C = 2 | all five | all five | all five | all five | Y | -- | -- | Y | TSMC 0.18 μm | ±0.75 | 3.26 m | -- | -- |
[15]/2016 | N | DPCF = 5, VF = 2, switch = 3, R = 4, C = 2 | all five | all five | all five | all five | Y | -- | -- | Y | TSMC 0.18 μm | ±1.5 | 1.2 m | -- | -- |
[16]/2016 | N | VDTA = 1, R = 1, C = 3 | LP, BP, HP | LP, BP, HP | -- | -- | Y | -- | -- | Y | TSMC 0.18 μm | ±0.9 | 0.54 m | -- | -- |
[17]/2017 | N | CCCCTA = 3, C = 2 | all five | all five | all five | LP, BP, HP | Y | -- | -- | Y | TSMC 0.18 μm | ±0.9 | 1.99 m | -- | -- |
[18]/2017 | N | MI-OTA = 3, MO-OTA = 3, C = 2 | all five | all five | all five | all five | N | -- | -- | Y | TSMC 0.18 μm | ±0.5 | 75 μ | -- | -- |
[19]/2017 | N | DVCC = 1, MO-CCII = 1, R = 4, C = 2 | -- | all five | -- | all five | Y | -- | -- | N | TSMC 0.18 μm | ±0.9, ±0.38 | N/A | -- | -- |
[20]/2017 | N | OTA = 1, DO-OTA = 3, switch = 1, C = 2 | -- | LP, BP, HP | LP, BP, HP | -- | Y | -- | -- | Y | TSMC 0.35 μm | N/A | 1.3 m | -- | -- |
[21]/2017 | N | DXCCDITA = 1, R = 2, C = 2 | all five | all five | BP, HP | all five | N | -- | -- | Y | TSMC 0.35 μm | ±1.5, +0.55 | N/A | AD844, LM13700 | ±5 |
[22]/2018 | N | FDCCII = 2, R = 4, C = 2 | all five | all five | all five | all five | Y | -- | -- | N | TSMC 0.18 μm | ±0.9 | 1.32 m | -- | -- |
[23]/2019 | N | VCII = 3, I-CB = 1, R = 3, C = 3 | all five | all five | all five | all five | N | -- | -- | N | TSMC 0.18 μm | ±0.9 | 1.47 μ | -- | -- |
[24]/2019 | N | VD-DXCC = 1, R = 2, C = 2 | all five | all five | -- | -- | Y | -- | -- | Y | PDK 0.18 μm | ±1.25 | 2.237 m | -- | -- |
[25]/2020 | N | OTA = 5, C = 2 | all five | all five | all five | all five | Y | -- | -- | Y | ADE 0.18 μm | ±0.9, −0.36 | 0.191 m | -- | -- |
[26]/2020 | N | EXCCTA = 2, switch = 1, R = 4, C = 2 | all five | all five | all five | all five | Y | -- | -- | Y | PDK 0.18 μm | ±1.25 | N/A | -- | -- |
[27]/2021 | N | VD-EXCCII = 1, R = 3, C = 3 | all five | all five | all five | all five | Y | -- | -- | Y | PDK 0.18 μm | ±1.25 | 5.76 m | -- | -- |
[28]/2021 | N | EX-CCCII = 1, R = 1, C = 2 | all five | all five | all five | BP, HP | N | -- | -- | Y | TSMC 0.18 μm | ±0.5 | 1.35 m | AD844 | ±8 |
[29]/2021 | N | VDBA = 2, R = 2, C = 2 | all five | all five | all five | LP, BP | Y | -- | -- | Y | TSMC 0.18 μm | ±0.75 | 0.373 m | LT1228 | ±5 |
[30]/2022 | N | VDBA = 3, R = 1, C = 2 | all five | all five | all five | all five | Y | -- | -- | Y | PDK 0.18 μm | ±1.25 | 5.482 m | CA3080, LF356 | ±5 |
[31]/2022 | N | DVCC = 3, R = 4, C = 2 | LP, BP, HP | all five | BP, HP | LP, BP, HP | N | -- | -- | N | TSMC 0.18 μm | ±1.25, +0.55 | 8.47 m | AD844 | ±12 |
[32]/2006 | N | FDCCII = 1, R = 3, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 2 | Y | N | TSMC 0.18 μm | ±2.5 | 118.1 m | -- | -- |
[33]/2009 | N | CDTA = 2, R = 1, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 2 | Y | Y | MIETEC 0.5 μm | N/A | N/A | -- | -- |
[34]/2009 | N | DVCC = 3, R = 3, C = 3 | -- | -- | -- | -- | −− | VM/CM, VM = 5, CM = 2 | Y | N | MIETEC 0.5 μm | N/A | N/A | -- | -- |
[35]/2014 | N | DVCCTA = 1, R = 2, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 2 | Y | Y | TSMC 0.18 μm | ±0.9, −0.5 | 2.283 m | -- | -- |
[36]/2016 | N | CCCTA = 1, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 2 | Y | Y | BJT, TSMC 0.35 μm | ±1 | N/A | -- | -- |
[37]/2016 | N | VDCC = 2, R = 2, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 3 | Y | Y | TSMC 0.18 μm | ±0.9 | N/A | -- | -- |
[38]/2017 | N | VDTA = 1, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 2 | Y | Y | TSMC 0.25 μm | ±1.5 | 2.09 m | -- | -- |
[39]/2020 | N | DX- MOCCII = 2, Rmos = 1, R = 2, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 4, CM = 3 | Y | N | TSMC 0.25 μm | ±1.25, −0.3, +0.81 | 6.87 m | AD844 | ±9.5 |
[40]/2022 | N | VDGA = 1, R = 1, C = 2 | -- | -- | -- | -- | −− | VM/CM, VM = 2, CM = 2 | N | Y | TSMC 0.35 μm | ±1.5 | 1.36 m | -- | -- |
[41]/2011 | Y | DVCCCTA = 1, C = 2 | LP, BP | -- | -- | -- | Y | VM/CM, VM = 2, CM = 2 | Y | Y | TSMC 0.25 μm | ±1.25 | N/A | -- | -- |
[42]/2014 | Y | CDTA = 2, C = 2 | -- | all five | -- | -- | N | CM, CM = 2 | N | Y | TSMC 0.18 μm | ±1.5 | N/A | AD844, CA3080 | ±12 |
[43]/2014 | Y | CDTA = 3, C = 2 | -- | all five | -- | -- | N | CM, CM = 4 | Y | Y | MIETEC 0.5 μm | ±2.5 | 19.6 m | -- | -- |
[44]/2017 | Y | VDDDA = 3, R = 1, C = 2 | all five | -- | -- | -- | Y | VM, VM = 2 | Y | Y | TSMC 0.18 μm | ±0.9 | 0.343 m | AD830, LM13700 | ±5 |
[45]/2017 | Y | VDCC = 2, switch = 3, R = 2, C = 2 | -- | all five | -- | -- | Y | VM/CM, VM = 2, CM = 2 | Y | Y | TSMC 0.18 μm | ±0.9 | N/A | OPA860 | N/A |
[46]/2019 | Y | CCFTA = 2, C = 2 | -- | all five | -- | -- | Y | VM/CM VM = 2 CM = 4 | Y | Y | TSMC 0.18 μm | ±1 | 2 m | -- | -- |
[47]/2020 | Y | CCII = 2, R = 3, C = 2 | all five | -- | -- | -- | Y | VM, VM = 2 | Y | N | IBM 0.13 μm | ±0.75, +0.23 | 5.03 m | AD844 | ±6 |
[48]/2020 | Y | VDGA = 1, R = 2, C = 2 | LP, BP, HP | LP, BP, HP | -- | -- | Y | VM/CM, VM = 2, CM = 2 | N | Y | TSMC 0.25 μm | ±1 | 1.49 m | -- | -- |
[49]/2021 | Y | MI-OTA = 3, OTA = 1, C = 2 | all five | -- | -- | -- | Y | VM, VM = 3 | Y | Y | TSMC 0.18 μm | ±1.2 | 96 μ | LM13700 | ±5 |
[50]/2021 | Y | VDCC = 2, switch = 2, R = 1, C = 2 | -- | all five | -- | -- | N | VM/CM, VM = 2, CM = 2 | Y | Y | TSMC 0.18 μm | ±0.9 | N/A | OPA860 | N/A |
This work | Y | VDGA = 1, R = 1, C = 2 | all five | all five | all five | LP, BP | Y | VM/CM, VM = 2, CM = 3 | Y | Y | TSMC 0.18 μm | ±0.9 | 1.31 m | LM13600 | ±5 |
Transistors | W (μm) | L (μm) |
---|---|---|
M1k–M2k | 23.5 | 0.18 |
M3k–M4k | 30 | 0.18 |
M5k–M7k | 5 | 0.18 |
M8k–M9k | 5.5 | 0.18 |
LP | BP | HP | BS | AP | ||
---|---|---|---|---|---|---|
VM | fo (MHz) | 3.098 | 3.105 | 3.064 | 2.999 | 3.030 |
Error (%) | 2.579 | 2.371 | 3.638 | 5.686 | 4.714 | |
CM | fo (MHz) | 3.099 | 3.106 | 3.068 | 2.964 | 3.010 |
Error (%) | 2.547 | 2.336 | 3.522 | 6.786 | 5.346 | |
TAM | fo (MHz) | 3.100 | 3.104 | 3.067 | 2.964 | 3.009 |
Error (%) | 2.525 | 2.406 | 3.557 | 6.786 | 5.377 | |
TIM | fo (MHz) | 3.100 | 3.106 | − | − | − |
Error (%) | 2.519 | 2.343 | − | − | − |
LP | BP | HP | BS | AP | ||
---|---|---|---|---|---|---|
VM | THD (%) | 0.47 | 0.45 | 0.55 | 1.92 | 1.29 |
DC component (mV) | 9.55 | 2.36 | 2.37 | 2.46 | 3.04 | |
CM | THD (%) | 1.5 | 1.49 | 0.9 | 1.87 | 1.39 |
DC component (μA) | 10.79 | 4.42 | 0.044 | 10.74 | 15.17 | |
TAM | THD (%) | 1.57 | 1.45 | 0.9 | 1.86 | 1.26 |
DC component (μA) | 10.74 | 4.43 | 0.015 | 10.72 | 15.15 | |
TIM | THD (%) | 0.58 | 0.38 | − | − | − |
DC component (mV) | 9.62 | 2.39 | − | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roongmuanpha, N.; Tangsrirat, W.; Pukkalanun, T. Single VDGA-Based Mixed-Mode Universal Filter and Dual-Mode Quadrature Oscillator. Sensors 2022, 22, 5303. https://doi.org/10.3390/s22145303
Roongmuanpha N, Tangsrirat W, Pukkalanun T. Single VDGA-Based Mixed-Mode Universal Filter and Dual-Mode Quadrature Oscillator. Sensors. 2022; 22(14):5303. https://doi.org/10.3390/s22145303
Chicago/Turabian StyleRoongmuanpha, Natchanai, Worapong Tangsrirat, and Tattaya Pukkalanun. 2022. "Single VDGA-Based Mixed-Mode Universal Filter and Dual-Mode Quadrature Oscillator" Sensors 22, no. 14: 5303. https://doi.org/10.3390/s22145303
APA StyleRoongmuanpha, N., Tangsrirat, W., & Pukkalanun, T. (2022). Single VDGA-Based Mixed-Mode Universal Filter and Dual-Mode Quadrature Oscillator. Sensors, 22(14), 5303. https://doi.org/10.3390/s22145303