Accurate Signal Conditioning for Pulsed-Current Synchronous Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Circuit Description
- the time δt between the rising edge of SYNC and the start of integration (both S1 and S2 closed);
- the integration time TINT (S1 closed and S2 open);
- the number NACQ of ADC acquisitions in the hold period (both S1 and S2 open).
2.2. Equipment for the Laboratory and On-Field Tests
2.3. The Implemented Two-Phase Reset-Integrate-Hold Measurement Method
- (1)
- Pulse integration phase
- (2)
- “Zero” integration phase
2.4. System Calibration Procedures
3. Results
3.1. Lab Characterization
3.2. Field-Tests
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koukourlis, C.S.; Trigonidis, V.K.; Sahalos, J.N. Differential synchronous demodulation for small signal amplitude estimation. IEEE Trans. Instrum. Meas. 1993, 42, 926–931. [Google Scholar] [CrossRef]
- Ruppert, M.G.; Harcombe, D.M.; Ragazzon, M.R.P.; Moheimani, S.O.R.; Fleming, A.J. A review of demodulation techniques for amplitude-modulation atomic force microscopy. Beilstein J. Nanotechnol. 2017, 8, 1407–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scofield, J.H. Frequency domain description of a lockin amplifier. Am. J. Phys. 1994, 62, 129. [Google Scholar] [CrossRef]
- Restelli, A.; Abbiati, R.; Geraci, A. Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications. Rev. Sci. Instrum. 2005, 76, 093112. [Google Scholar] [CrossRef]
- Blume, R.J. “Boxcar” Integrator with Long Holding Times. Rev. Sci. Instrum. 1961, 32, 1016. [Google Scholar] [CrossRef]
- Reichert, J.; Townsend, J. Gated integrator for repetitive signals. Rev. Sci. Instrum. 1964, 35, 1692–1697. [Google Scholar] [CrossRef]
- Collier, J.L.; Goddard, B.J.; Goode, D.C.; Marka, S.; Telle, H.H. A low-cost gated integrator boxcar averager. Meas. Sci. Technol. 1996, 7, 1204–1211. [Google Scholar] [CrossRef]
- Pettinato, S.; Girolami, M.; Olivieri, R.; Stravato, A.; Caruso, C.; Salvatori, S. Time-Resolved Dosimetry of Pulsed Photon Beams for Radiotherapy Based on Diamond Detector. IEEE Sens. J. 2022, 22, 12348–12356. [Google Scholar] [CrossRef]
- Perangin-Angin, B.; Tarigan, K.; Sihombing, P. Time Resolved Spectroscopy Using Boxcar Integrator. J. Phys. Conf. Ser. 2019, 1230, 012034. [Google Scholar] [CrossRef]
- Luferau, A.I.; Firsov, D.D.; Komkov, O.S. Infrared photoluminescence spectra measurements using boxcar integrator in the active baseline subtraction mode. J. Phys. Conf. Ser. 2019, 1400, 066035. [Google Scholar] [CrossRef]
- Patel, K.; Pillai, V.; Singh, N.; Thomas, J.; Kumar, A. Gated integrator PXI-DAQ system for Thomson scattering diagnostics. Fusion Eng. Des. 2017, 119, 17–21. [Google Scholar] [CrossRef]
- Cho, B. Intensity-modulated radiation therapy: A review with a physics perspective. Radiat Oncol J. 2018, 36, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dröge, L.H.; von Sivers, F.F.; Schirmer, M.A.; Wolff, H.A. Conventional 3D conformal radiotherapy and volumetric modulated arc therapy for cervical cancer: Comparison of clinical results with special consideration of the influence of patient- and treatment-related parameters. Strahlenther. Onkol. 2021, 197, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhao, G.; Feng, Z. A High Resolution Synchronous Demodulation Method Based on Gated Integrator for Precision Sensors. IEEE Trans. Instrum. Meas. 2022, 71, 9504009. [Google Scholar] [CrossRef]
- Pettinato, S.; Girolami, M.; Olivieri, R.; Stravato, A.; Barettin, D.; Salvatori, S. Compact Embedded Detection Electronics for Accurate Dose Measurements of MV Pulsed X-rays and Electrons. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022. [Google Scholar]
- D’Antonio, E.; Oliva, P.; Patanè, F.; Girolami, M.; Trucchi, D.M.; Salvatori, S. High Precision Integrator for CVD-Diamond Detectors for Dosimetric Applications. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–12 June 2018. [Google Scholar] [CrossRef]
- Salvatori, S.; Masarone, N.; Di Nucci, G.; Conte, G. Compact front-end electronics for low-level current sensor measurements. Electron. Lett. 2006, 42, 682–684. [Google Scholar] [CrossRef]
- Pettinato, S.; Orsini, A.; Girolami, M.; Trucchi, D.M.; Rossi, M.C.; Salvatori, S. A High-Precision Gated Integrator for Repetitive Pulsed Signals Acquisition. Electronics 2019, 8, 1231. [Google Scholar] [CrossRef] [Green Version]
- Pettinato, S.; Orsini, A.; Rossi, M.C.; Tagnani, D.; Girolami, M.; Salvatori, S. A Compact Gated Integrator for Conditioning Pulsed Analog Signals. In Applications in Electronics Pervading Industry, Environment and Society; Lecture Notes in Electrical Engineering; Saponara, S., De Gloria, A., Eds.; Springer Nature: Cham, Switzerland, 2019; Volume 627, pp. 33–39. [Google Scholar] [CrossRef]
- Pettinato, S.; Girolami, M.; Olivieri, R.; Stravato, A.; Caruso, C.; Salvatori, S. A Diamond-Based Dose-per-Pulse X-ray Detector for Radiation Therapy. Materials 2021, 14, 5203. [Google Scholar] [CrossRef] [PubMed]
- Pettinato, S.; Olivieri, R.; Salvatori, S. Single-Pulse Measurement Electronics for Accurate Dosimetry in X-ray Radiation Therapy. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Neuchatel, Switzerland, 23–25 June 2021. [Google Scholar] [CrossRef]
- Keithley. Model 6221 AC and DC Current Source Reference Manual. 2005. Available online: https://download.tek.com/manual/622x-901-01(B-Jun2005)(Ref).pdf (accessed on 15 July 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pettinato, S.; Girolami, M.; Rossi, M.C.; Salvatori, S. Accurate Signal Conditioning for Pulsed-Current Synchronous Measurements. Sensors 2022, 22, 5360. https://doi.org/10.3390/s22145360
Pettinato S, Girolami M, Rossi MC, Salvatori S. Accurate Signal Conditioning for Pulsed-Current Synchronous Measurements. Sensors. 2022; 22(14):5360. https://doi.org/10.3390/s22145360
Chicago/Turabian StylePettinato, Sara, Marco Girolami, Maria Cristina Rossi, and Stefano Salvatori. 2022. "Accurate Signal Conditioning for Pulsed-Current Synchronous Measurements" Sensors 22, no. 14: 5360. https://doi.org/10.3390/s22145360
APA StylePettinato, S., Girolami, M., Rossi, M. C., & Salvatori, S. (2022). Accurate Signal Conditioning for Pulsed-Current Synchronous Measurements. Sensors, 22(14), 5360. https://doi.org/10.3390/s22145360