Review of Optical Fiber Sensors for Temperature, Salinity, and Pressure Sensing and Measurement in Seawater
Abstract
:1. Introduction
2. Sensing Principle and Performance Parameters of OFSs
2.1. Sensing Principle
2.2. Performance Parameters for OFSs
3. OFSs for Single-Parameter Sensing and Measurement in TSP
3.1. Temperature
3.1.1. Temperature Sensing and Measurement Based on FG
3.1.2. Temperature Sensing and Measurement Based on SPR
3.1.3. Temperature Sensing and Measurement Based on an Interferometric OFS
3.1.4. Temperature Sensing and Measurement Based on MS
3.1.5. Temperature Sensing and Measurement Based on a Hybrid OFS
3.2. Salinity
3.2.1. Salinity Sensing and Measurement Based on FG
3.2.2. Salinity Sensing and Measurement Based on an Interferometric OFS
3.2.3. Salinity Sensing and Measurement Based on MS
3.3. Pressure
4. OFS for Multi-Parameter Sensing and Measurement in TSP
4.1. TS Dual-Parameter
4.1.1. TS Sensing and Measurement Based on FG
4.1.2. TS Sensing and Measurement Based on SPR
4.1.3. TS Sensing and Measurement Based on Interferometric OFSs
4.1.4. TS Sensing and Measurement Based on MS
4.1.5. TS Sensing and Measurement Based on Hybrid OFSs
4.2. TP Dual-Parameter
4.2.1. TP Sensing and Measurement Based on FG
4.2.2. TP Sensing and Measurement Based on an FPI
4.2.3. TP Sensing and Measurement Based on MS
4.2.4. TP Sensing and Measurement Based on Hybrid OFSs
4.3. SP Dual-Parameter
4.4. TSP Multi-Parameter
5. Practical Application of Optical Fiber Sensors in Ocean Observation
5.1. Encapsulation of Optical Fiber Sensors
5.2. Response Time of Optical Fiber Sensors
5.3. Sea Trial of Optical Fiber Sensors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FullName | Abbreviation | FullName | Abbreviation |
temperature, salinity, and pressure | TSP | temperature and salinity | TS |
temperature and pressure | TP | salinity and pressure | SP |
optical fiber sensor | OFS | microfiber sensor | MS |
expendable conductivity temperature depth | XCTD | conductivity temperature depth system | CTD |
expendable bathythermograph | XBT | refractive index | RI |
special fiber | SF | single mode fiber | SMF |
no-core fiber | NCF | multimode fiber | MMF |
high birefringence elliptic fiber | HBEF | polarization maintaining fiber | PMF |
photonic crystal fiber | PCF | few-mode fiber | FMF |
thermal optic coefficient | TOC | turn-around-point | TAP |
fiber grating | FG | surface plasmon resonance | SPR |
long period fiber grating | LPG | fiber Bragg grating | FBG |
extrinsic FPIs | EFPI | Fabry−Perot interferometer | FPI |
microfiber Mach−Zehnder interferometer | MMZI | Mach−Zehnder interferometer | MZI |
microfiber knot/loop resonator | MKR | Sagnac interferometer | SI |
optical fiber coupler | OMC | nano-cavity photonic crystal resonator | NC-PCR |
single-mode-multimode-single-mode-multimode-single-mode | SMSMS | polydimethylsiloxane | PDMS |
poly (acrylic acid) | PAA | polyimide | PI |
poly (allylamine hydrochloride) | PAH |
References
- Kumari, C.R.U.; Samiappan, D.; Kumar, R.; Sudhakar, T. Fiber optic sensors in ocean observation: A comprehensive review. Optik 2018, 179, 351–360. [Google Scholar] [CrossRef]
- Gonnella, G.; Böhnke, S.; Indenbirken, D.; Garbe-Schonberg, D.; Seifert, R.; Mertens, C.; Kurtz, S.; Perner, M. Endemic hydrothermal vent species identified in the open ocean seed bank. Nat. Microbiol. 2016, 1, 16086. [Google Scholar] [CrossRef] [PubMed]
- de Boer, A.M.; Sigman, D.M.; Toggweiler, J.R.; Russell, J.L. Effect of global ocean temperature change on deep ocean ventilation. Paleoceanography 2007, 22, PA2210. [Google Scholar] [CrossRef]
- Archer, D.; Martin, P.; Buffett, B.; Brovkin, V.; Rahmstorf, S.; Ganopolski, A. The importance of ocean temperature to global biogeochemistry. Earth Planet. Sci. Lett. 2004, 222, 333–348. [Google Scholar] [CrossRef]
- Swift, C.T.; Mcintosh, R.E. Considerations for microwave remote-sensing of ocean-surface salinity. IEEE Trans. Geosci. Remote Sens. 1983, 21, 480–491. [Google Scholar] [CrossRef]
- Wick, G.A.; Bates, J.J.; Scott, D.J. Satellite and skin-layer effects on the accuracy of sea surface temperature measurement from the Goes satellites. J. Atmos. Ocean. Technol. 2002, 19, 1834–1848. [Google Scholar] [CrossRef] [Green Version]
- Kilpatrick, K.A.; Podesta, G.P.; Evans, R. Overview of the Noaa/Nasa advanced very high resolution radiometer pathfinder algorithm for sea surface temperature and associated Matchup database. J. Geophys. Res. Ocean. 2001, 106, 9179–9197. [Google Scholar] [CrossRef]
- Schluessel, P.; Emery, W.J.; Grassi, H.; Mammen, T. On the bulk-skin temperature difference and its impact on satellite remote-sensing of sea-surface temperature. J. Geophys. Res. Ocean. 1990, 95, 13341–13356. [Google Scholar] [CrossRef]
- Available online: https://argo.ucsd.edu/ (accessed on 29 May 2022).
- Kao, K.C.; Hockham, G.A. Dielectric-fibre surface waveguides for optical frequencies. Proc. IEEE 1966, 113, 115–158. [Google Scholar] [CrossRef] [Green Version]
- Tong, L.M. Micro/nanofibre optical sensors: Challenges and prospects. Sensors 2018, 18, 903. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.F.S.; Castro-Camus, E.; Ottaway, D.J.; López-Higuera, J.M.; Feng, X.; Jin, W.; Jeong, Y.; Picqué, N.; Tong, L.M.; Reinhard, B.M.; et al. Roadmap on optical sensors. J. Opt. 2017, 19, 083001. [Google Scholar] [CrossRef] [PubMed]
- Udd, E.; Spillman, W.B. Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Chen, J.H.; Li, D.R.; Xu, F. Optical microfiber sensors: Sensing mechanisms, and recent advances. J. Lightwave Technol. 2019, 37, 2577–2589. [Google Scholar] [CrossRef]
- Li, T.L.; Wu, D.J.; Khyam, M.O.; Wu, D.J.; Guo, J.X.; Tan, Y.G.; Zhou, Z.D. Recent advances and tendencies regarding fiber optic sensors for deformation measurement: A review. IEEE Sens. J. 2020, 22, 2962–2973. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.J.; Wang, J.F.; Li, F. A high spatial resolution FBG sensor array for measuring ocean temperature and depth. Photonic Sens. 2020, 10, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Joe, H.E.; Yun, H.; Jo, S.H.; Jun, M.B.G.; Min, B.K. A review on optical fiber sensors for environmental monitoring. Int. J. Precis. Eng. Manuf. Green Technol. 2018, 5, 173–191. [Google Scholar] [CrossRef]
- Riza, M.A.; Go, Y.I.; Harun, S.W.; Maier, R.R.J. FBG sensors for environmental and biochemical applications—A review. IEEE Sens. J. 2020, 20, 7614–7627. [Google Scholar] [CrossRef]
- Korposh, S.; James, S.W.; Lee, S.W.; Tatam, R.P. Tapered optical fibre sensors: Current trends and future perspectives. Sensors 2019, 19, 2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.N.; Sun, Y.; Cai, L.; Gao, Y.P.; Cai, Y. Optical fiber sensors for measurement of heavy metal ion concentration: A review. Measurement 2020, 158, 107742. [Google Scholar] [CrossRef]
- Lee, H.K.; Choo, J.; Kim, J. Multiplexed passive optical fiber sensor networks for water level monitoring: A review. Sensors 2020, 20, 6813. [Google Scholar] [CrossRef]
- Qian, Y.; Zhao, Y.; Wu, Q.L.; Yang, Y. Review of salinity measurement technology based on optical fiber sensor. Sens. Actuators B 2018, 260, 86–105. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.J.; Song, S.M.; Li, F. Overview of fibre optic sensing technology in the field of physical ocean observation. Front. Phys. 2021, 9, 745487. [Google Scholar] [CrossRef]
- Min, R.; Liu, Z.Y.; Pereira, L.; Yang, C.K.; Sui, Q.; Marques, C. Optical fiber sensing for marine environment and marine structural health monitoring: A review. Opt. Laser Technol. 2021, 140, 107082. [Google Scholar] [CrossRef]
- McNeil, G.T. Metrical fundamentals of underwater lens system. Opt. Eng. 1977, 16, 162128. [Google Scholar] [CrossRef]
- Quan, X.H.; Fry, E.S. Empirical equation for the index of refraction of seawater. Appl. Opt. 1995, 34, 3477–3480. [Google Scholar] [CrossRef]
- Chao, C.Y.; Guo, L.J. Design and optimization of microring resonators in biochemical sensing applications. J. Lightwave Technol. 2006, 24, 1395–1402. [Google Scholar] [CrossRef]
- Chao, C.Y.; Guo, L.J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 2003, 83, 1527–1529. [Google Scholar] [CrossRef]
- Wang, S.S.; Wang, J.; Li, G.X.; Tong, L.M. Modeling optical microfiber loops for seawater sensing. Appl. Opt. 2012, 51, 3017–3023. [Google Scholar] [CrossRef]
- Wen, J.H.; Wang, J.; Yang, L.; Hou, Y.F.; Huo, D.H.; Cai, E.L.; Xiao, Y.X.; Wang, S.S. Response time of microfiber temperature sensor in liquid environment. IEEE Sens. J. 2020, 20, 6400–6407. [Google Scholar] [CrossRef]
- Larson, N. SBE 9Plus CTD User Manual; Sea-Bird Scientific: Washington, DC, USA, 2015; Available online: https://www.seabird.com/profiling/sbe-911plus-ctd/family-downloads?productCategoryId=54627473769 (accessed on 29 May 2022).
- Zhang, D.P.; Wang, J.; Wang, Y.J.; Dai, X. A fast response temperature sensor based on fiber Bragg grating. Meas. Sci. Technol. 2014, 25, 075105. [Google Scholar] [CrossRef]
- Ameen, O.F.; Younus, M.H.; Aziz, M.S.; Azmi, A.I.; Raja Ibrahim, R.K.; Ghoshal, S.K. Graphene diaphragm integrated FBG sensors for simultaneous measurement of water level and temperature. Sens. Actuators A Phys. 2016, 252, 225–232. [Google Scholar] [CrossRef]
- Lan, X.W.; Han, Q.; Wei, T.; Huang, J.; Xiao, H. Turn-Around-Point long-period fiber gratings fabricated by CO2 laser point-by-point irradiations. IEEE Photonics Technol. Lett. 2011, 23, 1664–1666. [Google Scholar] [CrossRef]
- Berruti, G.M.; Vaiano, P.; Boniello, A.; Principe, S.; Quero, G.; Persiano, G.V.; Consales, M.; Cusano, M. Highly efficient fiber optic thermal heating device based on Turn-Around-Point long period gratings. J. Lightwave Technol. 2021, 40, 797–804. [Google Scholar] [CrossRef]
- Sharma, A.K.; Jha, R.; Gupta, B.D. Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sens. J. 2007, 7, 1118–1129. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, Z.Q.; Hu, H.F. Fiber-optic SPR sensor for temperature measurement. IEEE Trans. Instrum. Meas. 2015, 64, 3099–3104. [Google Scholar] [CrossRef]
- Liu, G.G.; Han, M.; Hou, W.L.; Matt, S.; Goode, W. A miniature fiber-optic sensor for high-resolution and high-speed temperature sensing in ocean environment. Ocean Sens. Monit. VII. SPIE 2015, 9459, 80–85. [Google Scholar]
- Liu, G.G.; Han, M.; Hou, W.L. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity. Opt. Express 2015, 23, 7237–7247. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.L.; Liu, G.G.; Han, M. A novel, high-resolution, high-speed fiber-optic temperature sensor for oceanographic applications. In Proceedings of the 2015 IEEE/OES Eleveth Current, Waves and Turbulence Measurement (CWTM), St. Petersburg, FL, USA, 2–6 March 2015; pp. 1–4. [Google Scholar]
- Xu, Y.P.; Lu, P.; Qin, Z.G.; Harris, J.; Baset, F.; Lu, P.; Bhardwaj, V.R.; Bao, X.Y. Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer. Opt. Express 2013, 21, 3031–3042. [Google Scholar] [CrossRef]
- Lu, P.; Lin, G.b.; Wang, X.Z.; Chen, L.; Bao, X.Y. Lateral stress detection using a tapered fiber Mach-Zehnder interferometer. IEEE Photonics Technol. Lett. 2012, 24, 2038–2041. [Google Scholar]
- Wu, Y.; Xu, Y.; Yang, Y.G.; Jin, W.X.; Jiang, Y.C.; Shen, Y.; Jian, S.S. High-sensitivity pressure sensor based on fiber Mach-Zehnder interferometer. Meas. Sci. Technol. 2017, 28, 105102. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Kim, J.; Lee, S.L.; Kim, M.S.; Han, J.; Lee, Y.W. Simultaneous measurement of liquid level and temperature using in-fiber grating-based Mach-Zehnder interferometer and faraday rotator mirror. J. Nanosci. Nanotechnol. 2021, 21, 2024–2031. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.R.; Huang, Y.L.; Yang, S.Q.; Feng, D.J.; Kai, G.Y.; Zhao, Q.D.; Dong, X.Y. Sensitive current sensing base on all-fiber Mach-Zehnder interferometer. Adv. Sens. Syst. Appl. SPIE 2002, 4920, 487–491. [Google Scholar]
- Zhao, Y.; Wang, P.; Lv, R.Q.; Yang, Y. Temperature sensing characteristics based on up-taper and single mode-multimode fiber structure. IEEE Photonics Technol. Lett. 2016, 28, 2557–2560. [Google Scholar] [CrossRef]
- Yan, H.T.; Li, P.F.; Zhang, H.J.; Shen, X.Y.; Wang, Y.Z. A Micro S-shaped optical fiber temperature sensor based on dislocation fiber splice. Photonic Sens. 2017, 7, 372–376. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.T.; Zhao, Y.; Lv, R.Q.; Zheng, H.K.; Wang, X.X. Research on characteristics of wedge-shaped open-cavity Mach-Zehnder sensing structure for seawater temperature. IEEE Trans. Instrum. Meas. 2021, 70, 1–7. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, X.G.; Guo, T.; Weng, Y.Y.; Wang, R.H.; Ma, Y.; Rong, Q.Z.; Hu, M.L.; Feng, Z.Y. Highly sensitive temperature sensor using PANDA fiber Sagnac interferometer. J. Lightwave Technol. 2011, 29, 3640–3644. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.J.; Wang, S.S.; Liao, Y.P.; Wang, J. Seawater temperature measurement based on a high-birefringence elliptic fiber Sagnac loop. IEEE Photonics Technol. Lett. 2015, 27, 1772–1775. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Wang, S.S.; Liao, Y.P.; Yang, H.J. Simultaneous measurement of dual-points seawater temperatures using highly-birefringent elliptical-core fibers. Infrared Phys. Technol. 2017, 81, 170–174. [Google Scholar] [CrossRef]
- Shao, L.P.; Hu, J.H.; Lu, H.L.; Du, J.; Wu, T.Y.; Wang, Y.P. High-sensitivity temperature sensor based on polarization maintaining fiber Sagnac loop. Photonic Sens. 2019, 9, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.X.; Zhang, L.; Yin, X.F.; Tong, L.M. Polymer single-nanowire optical sensors. Nano Lett. 2008, 8, 2757–2761. [Google Scholar] [CrossRef]
- Brambilla, G.; Xu, F.; Horak, P.; Jung, Y.; Koizumi, F.; Sessions, N.P.; Koukharenko, E.; Feng, X.; Murugan, G.S.; Wilkinson, J.S.; et al. Optical fiber nanowires and microwires: Fabrication and applications. Adv. Opt. Photonics 2009, 1, 107–161. [Google Scholar] [CrossRef]
- Lou, J.Y.; Wang, Y.P.; Tong, L.M. Microfiber optical sensors: A review. Sensors 2014, 14, 5823–5844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.F.; Bo, L.; Semenova, Y.; Farrell, G.; Brambilla, G. Optical microfibre based photonic components and their applications in label-free biosensing. Biosensors 2015, 5, 471–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.J.; Wang, S.S.; Wang, X.; Liao, Y.P.; Wang, J. Temperature sensing in seawater based on microfiber knot resonator. Sensors 2014, 14, 18515–18525. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.J.; Wang, J.; Liao, Y.P.; Wang, S.S.; Wang, X. Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators. IEEE Sens. J. 2017, 17, 2398–2403. [Google Scholar] [CrossRef]
- Cai, L.; Xia, F.; Zhang, H.X.; Zhao, Y. Temperature sensing characteristics of an MKR in a microfiber taper based on mechanisms of interference and resonance with Vernier effect. Opt. Lasers Eng. 2021, 144, 106617. [Google Scholar] [CrossRef]
- Dang, H.T.; Chen, M.S.; Li, J. A highly-sensitive temperature-sensor based on a microfiber knot-resonator packaged in polydimethylsiloxane. IEEE Photonics J. 2020, 13, 1–8. [Google Scholar] [CrossRef]
- Tong, R.J.; Zhao, Y.; Hu, H.F.; Qu, J.F. Large measurement range and high sensitivity temperature sensor with FBG cascaded Mach-Zehnder interferometer. Opt. Laser Technol. 2020, 125, 106034. [Google Scholar] [CrossRef]
- Xia, F.; Zhao, Y.; Zheng, H.K.; Li, L.K.; Tong, R.J. Ultra-sensitive seawater temperature sensor using an FBG-cascaded microfiber MZI operating at dispersion turning point. Opt. Laser Technol. 2020, 132, 106458. [Google Scholar] [CrossRef]
- Yang, F.; Sukhishvili, S.; Du, H.; Tian, F. Marine salinity sensing using long-period fiber gratings enabled by stimuli-responsive polyelectrolyte multilayers. Sens. Actuators B Chem. 2017, 253, 745–751. [Google Scholar] [CrossRef]
- Yang, F.; Hlushko, R.; Wu, D.; Sukhishvili, S.; Du, H.; Tian, F. Ocean salinity sensing using long-period fiber gratings functionalized with layer-by-layer hydrogels. ACS Omega 2019, 4, 2134–2141. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.Q.; Dong, X.Y. Optical fiber laser salinity sensor based on multimode interference effect. IEEE Sens. J. 2014, 14, 1813–1816. [Google Scholar] [CrossRef]
- Wang, L.N.; Xu, Y.W.; Geng, Y.F.; Wang, J.Q.; Du, Y.; Yi, D.; Hong, X.M.; Li, X.J. High-sensitivity fiber salinity sensor based on an exposed-core microstructured fiber interferometer. J. Phys. D Appl. Phys. 2019, 52, 495402. [Google Scholar] [CrossRef]
- Lin, Z.T.; Lv, R.Q.; Zhao, Y.; Zheng, H.K. High-sensitivity salinity measurement sensor based on no-core fiber. Sens. Actuators A Phys. 2020, 305, 111947. [Google Scholar] [CrossRef]
- Wu, C.; Guan, B.O.; Lu, C.; Tan, H.Y. Salinity sensor based on polyimide-coated photonic crystal fiber. Opt. Express 2011, 19, 20003–20008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollah, M.A.; Yousufali, M.; Faysal, M.R.B.A.; Hasan, M.R.; Hossain, M.B.; Amiri, I.S. Highly sensitive photonic crystal fiber salinity sensor based on Sagnac interferometer. Results Phys. 2020, 16, 103022. [Google Scholar] [CrossRef]
- Algorri, J.F.; Zografopoulos, D.C.; Tapetado, A.; Poudereux, D.; Sanchez-Pena, J.M. Infiltrated photonic crystal fibers for sensing applications. Sensors 2018, 18, 4263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olyaee, S.; Seifouri, M.; Karami, R.; Mohebzadeh-Bahabady, A. Designing a high sensitivity hexagonal nano-cavity photonic crystal resonator for the purpose of seawater salinity sensing. Opt. Quantum Electron. 2019, 51, 97. [Google Scholar] [CrossRef]
- Liao, Y.P.; Wang, J.; Yang, H.J.; Wang, X.; Wang, S.S. Salinity sensing based on microfiber knot resonator. Sens. Actuators A Phys. 2015, 233, 22–25. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Wang, S.S.; Liao, Y.P. Fiber-optic salinity sensing with a panda-microfiber-based multimode interferometer. J. Lightwave Technol. 2017, 35, 5086–5091. [Google Scholar] [CrossRef]
- Vaddadi, V.S.C.S.; Parne, S.R.; Afzulpurkar, S.; Desai, S.P.; Parambil, V.V. Design and development of pressure sensor based on Fiber Bragg Grating (FBG) for ocean applications. Eur. Phys. J. Appl. Phys. 2020, 90, 30501. [Google Scholar] [CrossRef]
- Men, L.Q.; Lu, P.; Chen, Q.Y. A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement. J. Appl. Phys. 2008, 103, 053107. [Google Scholar] [CrossRef]
- Men, L.Q.; Lu, P.; Chen, Q.Y. Fiber optic sensor system for simultaneous measurement of different environmental parameters. Adv. Environ. Chem. Biol. Sens. Technol. VII SPIE 2010, 7673, 230–235. [Google Scholar]
- Sun, M.Y.; Jiang, H.T.; Shi, B.; Zhou, G.Y.; Inyang, H.I.; Feng, C.X. Development of FBG salinity sensor coated with lamellar polyimide and experimental study on salinity measurement of gravel aquifer. Measurement 2019, 140, 526–537. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Q.L.; Zhang, Y.N. Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-cype micro-structured fiber. Sens. Actuators B Chem. 2018, 258, 822–828. [Google Scholar] [CrossRef]
- Li, K.W.; Liu, G.G.; Wu, Y.H.; Hao, P.; Zhou, W.C.; Zhang, Z.Q. Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum. Talanta 2014, 120, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Chen, J.H.; Xu, F. Sensitive and wearable optical microfiber sensor for human health monitoring. Adv. Mater. Technol. 2018, 3, 1800296. [Google Scholar] [CrossRef]
- Mei, H.Y.; Pan, J.; Zhang, Z.; Zhang, L.; Tong, L.M. Coiled optical nanofiber for optofluidic absorbance detection. ACS Sens. 2019, 4, 2267–2271. [Google Scholar] [CrossRef]
- Velázquez-González, J.S.; Monzón-Hernández, D.; Martínez-Piñón, F.; Hernández-Romano, I. Highly sensitive surface plasmon resonance-based optical fiber multi-parameter sensor. Procedia Eng. 2016, 168, 1249–1252. [Google Scholar] [CrossRef]
- Velázquez-González, J.S.; Monzón-Hernández, D.; Martínez-Piñón, F.; Hernández-Romano, I. Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor. Sens. Actuators B Chem. 2017, 242, 912–920. [Google Scholar] [CrossRef]
- Wu, Q.L.; Zhao, Y.; Si-Yu, E.; Zhang, Y.N. Reflex optical fiber probe for simultaneous determination of seawater salinity and temperature by surface plasmon resonance. Instrum. Sci. Technol. 2019, 47, 374–388. [Google Scholar] [CrossRef]
- Li, H.; Qian, X.L.; Zheng, W.L.; Lu, Y.; E, S.-Y.; Zhang, Y.N. Theoretical and experimental characterization of a salinity and temperature sensor employing optical fiber surface plasmon resonance (SPR). Instrum. Sci. Technol. 2020, 1762204, 601–615. [Google Scholar] [CrossRef]
- Wang, H.R.; Dai, W.Y.; Cai, X.; Xiang, Z.W.; Fu, H.Y. Half-side PDMS-coated dual-parameter PCF sensor for simultaneous measurement of seawater salinity and temperature. Opt. Fiber Technol. 2021, 65, 102608. [Google Scholar] [CrossRef]
- Li, C.X.; Yang, W.L.; Wang, M.; Yu, X.Y.; Fan, J.Y.; Xiong, Y.L.; Yang, Y.Q.; Li, L.J. A review of coating materials used to improve the performance of optical fiber sensors. Sensors 2020, 20, 4215. [Google Scholar] [CrossRef] [PubMed]
- Qutb, S.R.; Aly, A.H.; Sabra, W. Salinity and temperature detection for seawater based on a 1D-defective photonic crystal material. Int. J. Mod. Phys. B 2021, 35, 2150012. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Vasiliev, M.; Alameh, K. Three-wave fiber Fabry-Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater. IEEE Photonics Technol. Lett. 2011, 23, 450–452. [Google Scholar] [CrossRef]
- Flores, R.; Janeiro, R.; Viegas, J. Optical fibre Fabry-Pérot interferometer based on inline microcavities for salinity and temperature sensing. Sci. Rep. 2019, 9, 9556. [Google Scholar] [CrossRef]
- Zheng, H.K.; Zhao, Y.; Lv, R.Q.; Lin, Z.T.; Wang, X.X.; Zhou, Y.F.; Chen, S.Z. Reflective optical fiber sensor based on dual Fabry Perot cavities for simultaneous measurement of salinity and temperature. IEEE Sens. J. 2021, 21, 27495–27502. [Google Scholar] [CrossRef]
- Yan, J.M.; Zhang, A.L.; Cheng, Q.H.; Li, W.; Sun, C. High sensitivity open-cavity Mach-Zehnder interferometer based on no-core fiber for seawater salinity measurement. Optik 2021, 227, 165954. [Google Scholar] [CrossRef]
- Zhao, J.C.; Zhang, Y.N.; Liu, Y.X.; Li, C.S.; Lian, Z.G.; Lv, R.Q.; Zhao, Y. Lateral offset optical fiber modal interferometer sensor for simultaneous measurement of seawater temperature and salinity. Opt. Fiber Technol. 2021, 67, 102737. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Y.Q.; Li, B.J. Tunable refractive index sensor with ultracompact structure twisted by poly (trimethylene terephthalate) nanowires. ACS Nano 2009, 3, 3110–3114. [Google Scholar] [CrossRef]
- Liao, C.R.; Wang, D.N.; He, X.Y.; Yang, M.W. Twisted optical microfibers for refractive index sensing. IEEE Photonics Technol. Lett. 2011, 23, 848–850. [Google Scholar] [CrossRef]
- Bo, L.; Wang, P.F.; Semenova, Y.; Farrell, G. High sensitivity fiber refractometer based on an optical microfiber coupler. IEEE Photonics Technol. Lett. 2012, 25, 228–230. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.S.; Liao, Y.P.; Yang, H.J.; Wang, X.; Wang, J. Modeling seawater salinity and temperature sensing based on directional coupler assembled by polyimide-coated micro/nanofibers. Appl. Opt. 2015, 54, 10283–10289. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Yang, H.J.; Liao, Y.P.; Wang, X.; Wang, J. High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Zhou, L.J.; Yu, Y.; Cao, L.; Huang, H.M.; Tao, Y.Y.; Zhang, Z.F.; Wang, J.F.; Yang, J.B.; Zhang, Z.R. Fabrication and characterization of seawater temperature sensor with self-calibration based on optical microfiber coupler interferometer. Appl. Sci. 2020, 10, 6018. [Google Scholar] [CrossRef]
- Zhou, L.J.; Yu, Y.; Huang, H.M.; Tao, Y.Y.; Wen, K.; Li, G.F.; Yang, J.B.; Zhang, Z.R. Salinity sensing characteristics based on optical microfiber coupler interferometer. Photonics 2020, 7, 77. [Google Scholar] [CrossRef]
- Wang, S.S.; Liu, T.Q.; Wang, X.; Liao, Y.P.; Wang, J.; Wen, J.H. Hybrid structure Mach-Zehnder interferometer based on silica and fluorinated polyimide microfibers for temperature or salinity sensing in seawater. Measurement 2019, 135, 527–536. [Google Scholar] [CrossRef]
- Wang, J.; Liao, Y.P.; Wang, S.S.; Wang, X. Ultrasensitive optical sensing in aqueous solution based on microfiber modal interferometer. Opt. Express 2018, 26, 24843–24853. [Google Scholar] [CrossRef]
- Liu, T.Q.; Wang, J.; Liao, Y.P.; Yang, L.; Wang, S.S. Splicing point tapered fiber Mach-Zehnder interferometer for simultaneous measurement of temperature and salinity in seawater. Opt. Express 2019, 27, 23905–23918. [Google Scholar] [CrossRef]
- Yang, C.K.; Zhang, S.Q.; Shi, D.L.; Wu, Y.C.; Cao, Z.H.; Liu, Z.Y. Simultaneous measurement of salinity and temperature using a Sagnac interferometer based on concatenated polarization-maintaining fiber tapers. Appl. Opt. 2021, 60, 8904–8909. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.P.; Wang, J.; Wang, S.S.; Yang, H.J.; Wang, X. Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator. J. Lightwave Technol. 2016, 34, 5378–5384. [Google Scholar] [CrossRef]
- Zheng, H.K.; Lv, R.Q.; Zhao, Y.; Tong, R.J.; Lin, Z.T.; Wang, X.X.; Zhou, Y.F.; Zhao, Q. Multifunctional optical fiber sensor for simultaneous measurement of temperature and salinity. Opt. Lett. 2020, 45, 6631–6634. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.K.; Zhao, Y.; Lv, R.Q.; Lin, Z.T.; Wang, X.X.; Zhou, Y.F.; Hu, G.G. Study on the temperature and salinity sensing characteristics of multifunctional reflective optical fiber probe. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Peng, Y.; Tong, R.J.; Cai, L. Simultaneous measurement of seawater salinity and temperature with composite fiber-optic interferometer. IEEE Trans. Instrum. Meas. 2021, 71, 9502908. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Wang, X.X.; Peng, Y.; Hu, X.G. Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements. Sens. Actuators B Chem. 2022, 353, 131134. [Google Scholar] [CrossRef]
- Wu, Q.L.; Zhao, Y.; Zhang, Y.N.; Liu, S.X.; Zhao, Q.; Chen, S.Z. Theoretical analysis of seawater depth and temperature measurement with C-type micro-structured fiber grating. Opt. Fiber Technol. 2019, 47, 133–140. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, S.Z.; Zhang, K.K.; Yan, X.K.; Yang, X.L.; Bai, X.J.; Liu, S.X. An optical fiber expendable seawater temperature/depth profile sensor. In AOPC 2017: Fiber Optic Sensing and Optical Communications; SPIE: Philadelphia, PA, USA, 2017; Volume 10464, pp. 418–423. [Google Scholar]
- Zhao, Q.; Chen, S.Z.; Lv, R.Q.; Zhang, J.M.; Zhang, K.K.; Zhang, L.; Ding, Y.Q. Design and optimization of optical-path for expendable optical fiber ocean temperature-depth sensor. Laser Optoelectron. Prog. 2018, 55, 060601. [Google Scholar] [CrossRef]
- Sun, B.; Wang, Y.P.; Qu, J.L.; Liao, C.R.; Yin, G.L.; He, J.; Zhou, J.T.; Tang, J.; Liu, S.; Li, Z.Y.; et al. Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet. Opt. Express 2015, 23, 1906–1911. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.Y.; Zhang, Z.R.; Yu, Y.; Qin, S.P.; Zhang, F.Y.; Li, M.W.; Bian, Q.; Yin, M.X.; Yang, J.B. Simultaneous measurement of seawater temperature and pressure with polydimethylsiloxane packaged optical microfiber coupler combined Sagnac loop. J. Lightwave Technol. 2021, 40, 323–333. [Google Scholar] [CrossRef]
- Hou, Y.F.; Wang, J.; Wang, X.; Liao, Y.P.; Yang, L.; Cai, E.L.; Wang, S.S. Simultaneous measurement of pressure and temperature in seawater with PDMS sealed microfiber Mach-Zehnder interferometer. J. Lightwave Technol. 2020, 38, 6412–6421. [Google Scholar] [CrossRef]
- Dong, N.N.; Wang, S.M.; Jiang, L.; Jiang, Y.; Wang, P.; Zhang, L.C. Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings. IEEE Photonics Technol. Lett. 2017, 30, 431–434. [Google Scholar] [CrossRef]
- Gao, X.K.; Ning, T.G.; Zhang, C.B.; Xu, J.; Zheng, J.J.; Lin, H.; Li, J.; Pei, L.; You, H.D. A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing. Opt. Commun. 2020, 454, 124441. [Google Scholar] [CrossRef]
- Yang, M.S.; Zhu, Y.L.; An, R. Underwater fiber-optic salinity and pressure sensor based on surface plasmon resonance and multimode interference. Appl. Opt. 2021, 60, 9352–9357. [Google Scholar] [CrossRef]
- Wang, Y.J.; Dai, X.; Zhao, Q.; Li, F.; Gao, X.; Bo, B.X. Based on fiber grating the high sensitivity all optical fiber CTD. Proc. SPIE Int. Soc. Opt. Eng. 2012, 8421, 842148. [Google Scholar]
- Zhao, Y.; Wu, Q.L.; Zhang, Y.N. Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor. Measurement 2019, 148, 106792. [Google Scholar] [CrossRef]
- Yu, Y.; Bian, Q.; Lu, Y.; Zhang, X.L.; Yang, J.B.; Liang, L.M. High sensitivity all optical fiber Conductivity-Temperature-Depth (CTD) sensing based on an optical microfiber coupler (OMC). J. Lightwave Technol. 2018, 37, 2739–2747. [Google Scholar] [CrossRef]
- Liu, J.C.; Hou, Y.F.; Wang, J.; Zhong, G.Q.; Zhang, L.H.; Zhuang, F.N.; Yu, L.J.; Wang, S.S. Multi-parameter demodulation for temperature, salinity and pressure sensor in seawater based on the semi-encapsulated microfiber Mach-Zehnder interferometer. Measurement 2022, 196, 111213. [Google Scholar] [CrossRef]
- Paladino, D.; Quero, G.; Caucheteur, C.; Megret, P.; Cusano, A. Hybrid fiber grating cavity for multi-parametric sensing. Opt. Express 2010, 18, 10473–10486. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Jing, Z.G.; Liu, Q.; Li, A.; Lee, A.; Cheng, Y.; Zhang, Y.; Peng, W. All-silica fiber-optic temperature-depth-salinity sensor based on cascaded EFPIs and FBG for deep sea exploration. Opt. Express 2021, 29, 23953–23966. [Google Scholar] [CrossRef]
- Park, C.S.; Joo, K.I.; Kang, S.W.; Kim, H.R. A PDMS-coated optical fiber Bragg grating sensor for enhancing temperature sensitivity. J. Opt. Soc. Korea 2011, 15, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Urrutia, A.; Goicoechliaoea, J.; Ricchiuti, A.L.; Barrera, D.; Sales, S.; Arregui, F.J. Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating. Sens. Actuators B-Chem. 2016, 227, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.Q.; Luo, X.D.; Liu, Y.G.; Ma, C.J.; Qiao, X.G. Performance improvement of FBG sensors based on the pre-stressed package technique. Opt. Fiber Technol. 2021, 65, 102623. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.L.; Sun, P.; Du, D.W.; Yu, L.Y.; Zhang, J.W.; Ding, B.Y.; Han, G.H.; Qu, Y. Shipborne expendable all-optical fiber ocean temperature-depth profile sensor. Appl. Opt. 2022, 61, 2089–2095. [Google Scholar] [CrossRef] [PubMed]
- Li, B.W.; Liu, Y.G.; Song, X.Y.; Fu, H.W.; Jia, Z.N.; Gao, H. High-sensitivity temperature sensor based on ultraviolet glue-filled silica capillary tube. J. Mod. Opt. 2020, 67, 1327–1333. [Google Scholar] [CrossRef]
- Pan, R.; Yang, W.L.; Li, L.J.; Yang, Y.Q.; Zhang, L.J.; Yu, X.Y.; Fan, J.Y.; Yu, S.; Xiong, Y.L. A high-sensitive fiber-optic Fabry-Perot sensor with parallel polymer-air cavities based on vernier effect for simultaneous measurement of pressure and temperature. IEEE Sens. J. 2021, 21, 21577–21585. [Google Scholar] [CrossRef]
- Si-Yu, E.; Zhang, Y.N.; Wang, X.J.; Zhang, Y.Y.; Han, B. Capillary encapsulated reflective fiber optic SPR temperature sensor. Phys. Scr. 2019, 94, 045504. [Google Scholar]
- Wang, S.S.; Miao, Y.P.; Fei, C.W.; Zhang, H.M.; Li, B. A high-sensitivity temperature sensor based on a liquid cladding tapered microfiber. IEEE Sens. J. 2021, 21, 6152–6157. [Google Scholar] [CrossRef]
- Hu, X.Q.; Zhang, H.; Wang, Y.J.; Liang, Y.; Liu, H.F.; Lin, W.; Liu, B. Magnetic-ionic-liquid-integrated microfiber Mach-Zehnder interferometer for simultaneous measurement of magnetic field and temperature. Opt. Fiber Technol. 2021, 67, 102746. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Wang, S.S. Absolute salinity measurement based on microfiber coaxial Mach-Zehnder Interferometer. J. Coast. Res. 2020, 102, 194–201. [Google Scholar] [CrossRef]
- Zhang, L.H.; Wang, J.; Liu, J.C.; Zhang, J.C.; Hou, Y.F.; Wang, S.S. Encapsulation research of microfiber Mach-Zehnder interferometer temperature and salinity sensor in seawater. IEEE Sens. J. 2021, 21, 22803–22813. [Google Scholar] [CrossRef]
- Pan, Y.H.; Jiang, J.F.; Liu, K.; Wang, S.; Liu, T.G. Note: Response time characterization of fiber Bragg grating temperature sensor in water medium. Rev. Sci. Instrum. 2016, 87, 116102. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.J.; Webb, D.J.; Jackson, D.A.; Zhang, L.; Bennion, I. In-fiber Bragg-grating temperature sensor system for medical applications. J. Lightwave Technol. 1997, 15, 779–785. [Google Scholar]
- Rinaudo, P.; Paya-Zaforteza, I.; Calderón, P.; Sales, S. Experimental and analytical evaluation of the response time of high temperature fiber optic sensors. Sens. Actuators A Phys. 2016, 243, 167–174. [Google Scholar] [CrossRef]
- Duraibabu, D.B.; Leen, G.; Toal, D.; Newe, T.; Lewis, E.; Dooly, G. Underwater depth and temperature sensing based on fiber optic technology for marine and fresh water applications. Sensors 2017, 17, 1228. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Y.; Guo, W.P.; Xia, M.; Li, W.; Yang, K.C. In situ measurement of seawater salinity with an optical refractometer based on total internal reflection method. Opt. Express 2018, 26, 25510–25523. [Google Scholar] [CrossRef]
- Chen, K.C.; Hsieh, T.S.; Wu, C.W.; Hsu, C.Y.; Chiang, C.C. Fiber Bragg grating technology to construct the strain variation sensing system of an underwater pressure vessel. Sens. Mater. 2018, 30, 2383–2390. [Google Scholar] [CrossRef]
- Li, X.R.; Li, Y.Q.; Wen, Z.Y. 300m optic fiber Bragg grating temperature sensing system for seawater measurement. J. Phys. Conf. Ser. 2011, 276, 012130. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, C.G.; Garcia-Benadí, A.; Corredera, P.; Hernandez, S.; Calvo, A.G.; Fernandez, J.D.; Nogueres-Cervera, M.; de Torres, C.P.; del Campo, D. Traceable sea water temperature measurements performed by optical fibers. Measurement 2018, 127, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Carlino, S.; Mirabile, M.; Troise, C.; Sacchi, M.; Zeni, L.; Minardo, A.; Caccavale, M.; Daranyi, V.; Natale, G.D. Distributed-temperature-sensing using optical methods: A first application in the offshore area of Campi Flegrei caldera (Southern Italy) for volcano monitoring. Remote Sens. 2016, 8, 674. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Herrera, N.; Esteban, O.; Navarrete, M.C.; Le Haitre, M.; González-Cano, A. In situ salinity measurements in seawater with a fibre-optic probe. Meas. Sci. Technol. 2006, 17, 2227. [Google Scholar] [CrossRef] [Green Version]
Type | Structure | ST (nm/°C) | SS (nm/‰) | SP (nm/MPa) | Fabrication Difficulty | Sea Trial |
---|---|---|---|---|---|---|
FBG | 0.0094 [76]–1.054 [111] | 0.00358 [78]–0.0708 [120] | 0.5 [120]–24.95 [75] | Medium | √ | |
SPR | 1.802 [121]–7.609 [79] | 0.00558 [85]–1.402 [79] | 1.42 [119]–2.838 [121] | Difficulty | √ | |
Interferometric OFS | FPI | 0.249 [114]–6.85 [92] | 50 [92] | 1.13 [114] | Medium | - |
MZI | 0.05 [48]–6 [49] | 0.0194 [66]–3.42 [68] | - | Easy | - | |
SI | 0.0149 [69]–1.73 [53] | 0.75 [70] | - | Easy | - | |
Hybrid OFS | FBG MZI | 0.0107 [118]–38.38 [63] | - | - | Medium | - |
FPI MZI | 0.4 [108]–2.767 [110] | 0.244 [110]–2.7 [108] | - | Medium | - | |
FPI FBG | 306.2 [117] | - | 5.014 × 105 [117] | Medium | √ | |
Microfiber | MKR | 0.02281 [73]–8.48 [61] | 0.02118 [58] | - | Medium | - |
OMC | 1.0074 [100]–2.326 [122] | 0.3037 [101]–1.596 [122] | 0.169 [122]–3.416 [115] | Difficulty | - | |
MMZI | 0.14 [102]–7.41 [116] | 0.064 [102] | 13.31 [116] | Easy | √ |
Time | Location | Depth | Structure | Parameter | Result | Reference |
---|---|---|---|---|---|---|
2017 | (49.54 N, 16.31 W) | 14 m | FPI FBG | Pressure | Pressure resolution of 0.0784 kPa; | [140] |
(49.67 N, 16.37 W) | Temperature | Temperature resolution of 0.1 °C | ||||
2021 | Sea area of Weihai | 70 m | two FBGs | Temperature−depth profile | Temperature error of ±0.02 °C | [129] |
2018 | - | 100 m | FBG | pressure | –22.364 με/bar | [142] |
2011 | South China Sea | 300 m | FBG array | Temperature−depth profile | Temperature accuracy of better than 0.2 °C | [143] |
2017 | Vilanova I la Geltrú coast | 20 m | FBG | Temperature−depth profile | Temperature error of less than 0.1 °C | [144] |
2020 | Yellow Sea of China | 70 m | FBG array | Temperature−depth profile | Temperature accuracy of 0.01 °C | [17] |
Depth accuracy of 0.1% | ||||||
2016 | Volcano Bay | 50 m | SMF | Temperature−depth profile | Temperature error of about 1 °C | [145] |
2006 | Baltic | - | SPR | Salinity | - | [146] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Wang, J.; Zhang, L.; Liu, J.; Wang, S. Review of Optical Fiber Sensors for Temperature, Salinity, and Pressure Sensing and Measurement in Seawater. Sensors 2022, 22, 5363. https://doi.org/10.3390/s22145363
Liang H, Wang J, Zhang L, Liu J, Wang S. Review of Optical Fiber Sensors for Temperature, Salinity, and Pressure Sensing and Measurement in Seawater. Sensors. 2022; 22(14):5363. https://doi.org/10.3390/s22145363
Chicago/Turabian StyleLiang, Honglin, Jing Wang, Lihui Zhang, Jichao Liu, and Shanshan Wang. 2022. "Review of Optical Fiber Sensors for Temperature, Salinity, and Pressure Sensing and Measurement in Seawater" Sensors 22, no. 14: 5363. https://doi.org/10.3390/s22145363
APA StyleLiang, H., Wang, J., Zhang, L., Liu, J., & Wang, S. (2022). Review of Optical Fiber Sensors for Temperature, Salinity, and Pressure Sensing and Measurement in Seawater. Sensors, 22(14), 5363. https://doi.org/10.3390/s22145363