Machine Learning Methods for Hypercholesterolemia Long-Term Risk Prediction
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Dataset Description
- Age (years) [34]: This feature refers to the age of a person who is over 50 years old. It is numerical data.
- Gender [34]: This feature refers to a person’s gender. The number of men is 172 (49.15%), while the number of women is 178 (50.85%) It is nominal data.
- BMI (Kg/m2) [35]: This feature captures the participant’s body mass index. It is numerical data.
- Waist (cm) [36]: It is the measurement taken around the abdomen at the level of the umbilicus. It is numerical data.
- SBP (mmHg) [37]: This feature captures the participant’s systolic blood pressure. It is numerical data.
- DBP (mmHg) [37]: This feature captures the participant’s diastolic blood pressure. It is numerical data.
- Hypertension [38]: This feature refers to whether a participant is hypertensive or not. The percentage of participants who have hypertension is 58.9%. It is nominal data.
- HDL (mg/dL) [2]: This feature captures the participant’s high-density lipoprotein. It is numerical data.
- LDL (mg/dL) [2]: This feature captures the participant’s low-density lipoprotein. It is numerical data.
- TotChol (mg/dL) [2]: This feature captures the participant’s total cholesterol. It is numerical data.
- Physical Activity [39]: This feature captures the participant’s physical activity and has 4 categories (high 2.6%, medium 11.2%, low 55.4% and very low 30.8%). It is nominal data.
- Alcohol Consumption [40]: This feature refers to whether this participant consumes alcohol or not. The percentage of participants who consume alcohol more than normal is 44.1%. It is nominal data.
- Diabetes [41]: This feature refers to whether the participant has been diagnosed with diabetes or not. The percentage of participants who suffer from diabetes is 20.6%. It is nominal data.
- Hypercholesterolemia: This feature stands for whether the participant has been diagnosed with hypercholesterolemia. The percentage of participants who have been diagnosed with hypercholesterolemia is 44.6%. It is nominal data.
3.2. Hypercholesterolemia Risk Prediction
3.2.1. Data Preprocessing
3.2.2. Features Ranking
3.3. Data Exploration
- (1)
- : underweight
- (2)
- : healthy
- (3)
- : overweight
- (4)
- : obesity
- (a)
- Class I:
- (b)
- Class II:
- (c)
- Class III: (severe obesity).
3.4. Machine Learning Models
3.4.1. Naive Bayes
3.4.2. K-Nearest Neighbors
3.4.3. Logistic Regression
3.4.4. Rotation Forest
3.4.5. Artificial Neural Network
3.4.6. Support Vector Machine
3.4.7. Decision Tree
3.4.8. Logistic Model Tree
3.4.9. Random Forest
3.4.10. Ensemble Learning
3.5. Evaluation Metrics
4. Results and Discussion
4.1. Experiments Setup
4.2. Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Steinberg, D.; Parthasarathy, S.; Carew, T.E.; Khoo, J.C.; Witztum, J.L. Beyond cholesterol. N. Engl. J. Med. 1989, 320, 915–924. [Google Scholar] [PubMed]
- Vincent, M.J.; Allen, B.; Palacios, O.M.; Haber, L.T.; Maki, K.C. Meta-regression analysis of the effects of dietary cholesterol intake on LDL and HDL cholesterol. Am. J. Clin. Nutr. 2019, 109, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Mokdad, A.H.; Giles, W.H.; Mensah, G.A. Serum total cholesterol concentrations and awareness, treatment, and control of hypercholesterolemia among US adults: Findings from the National Health and Nutrition Examination Survey, 1999 to 2000. Circulation 2003, 107, 2185–2189. [Google Scholar] [CrossRef] [PubMed]
- Larson, D.E. Mayo Clinic Family Health Book; W. Morrow: New York, NY, USA, 1990. [Google Scholar]
- Gidding, S.S.; Allen, N.B. Cholesterol and atherosclerotic cardiovascular disease: A lifelong problem. J. Am. Heart Assoc. 2019, 8, e012924. [Google Scholar] [CrossRef]
- Mohler, E.R., III; Hiatt, W.R.; Creager, M.A. Cholesterol reduction with atorvastatin improves walking distance in patients with peripheral arterial disease. Circulation 2003, 108, 1481–1486. [Google Scholar] [CrossRef] [Green Version]
- Tirschwell, D.; Smith, N.; Heckbert, S.; Lemaitre, R.; Longstreth, W.; Psaty, B. Association of cholesterol with stroke risk varies in stroke subtypes and patient subgroups. Neurology 2004, 63, 1868–1875. [Google Scholar] [CrossRef]
- Raised Cholesterol. Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3236 (accessed on 19 June 2022).
- Kanter, M.M.; Kris-Etherton, P.M.; Fernandez, M.L.; Vickers, K.C.; Katz, D.L. Exploring the factors that affect blood cholesterol and heart disease risk: Is dietary cholesterol as bad for you as history leads us to believe? Adv. Nutr. 2012, 3, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Dharmayat, K.I.; Stevens, C.A.; Sharabiani, M.T.; Jones, R.S.; Watts, G.F.; Genest, J.; Ray, K.K.; Vallejo-Vaz, A.J. Prevalence of familial hypercholesterolemia among the general population and patients with atherosclerotic cardiovascular disease: A systematic review and meta-analysis. Circulation 2020, 141, 1742–1759. [Google Scholar] [CrossRef]
- Bouillon, K.; Singh-Manoux, A.; Jokela, M.; Shipley, M.J.; Batty, G.D.; Brunner, E.J.; Sabia, S.; Tabák, A.G.; Akbaraly, T.; Ferrie, J.E.; et al. Decline in low-density lipoprotein cholesterol concentration: Lipid-lowering drugs, diet, or physical activity? Evidence from the Whitehall II study. Heart 2011, 97, 923–930. [Google Scholar] [CrossRef]
- Fazakis, N.; Kocsis, O.; Dritsas, E.; Alexiou, S.; Fakotakis, N.; Moustakas, K. Machine learning tools for long-term type 2 diabetes risk prediction. IEEE Access 2021, 9, 103737–103757. [Google Scholar] [CrossRef]
- Alexiou, S.; Dritsas, E.; Kocsis, O.; Moustakas, K.; Fakotakis, N. An approach for Personalized Continuous Glucose Prediction with Regression Trees. In Proceedings of the 2021 IEEE 6th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Preveza, Greece, 24–26 September 2021; pp. 1–6. [Google Scholar]
- Dritsas, E.; Alexiou, S.; Konstantoulas, I.; Moustakas, K. Short-term Glucose Prediction based on Oral Glucose Tolerance Test Values. In Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies—HEALTHINF, Vienna, Austria, 9–11 February 2022; Volume 5, pp. 249–255. [Google Scholar]
- Dritsas, E.; Fazakis, N.; Kocsis, O.; Fakotakis, N.; Moustakas, K. Long-Term Hypertension Risk Prediction with ML Techniques in ELSA Database. In International Conference on Learning and Intelligent Optimization; Springer: Berlin/Heidelberg, Germany, 2021; pp. 113–120. [Google Scholar]
- Moll, M.; Qiao, D.; Regan, E.A.; Hunninghake, G.M.; Make, B.J.; Tal-Singer, R.; McGeachie, M.J.; Castaldi, P.J.; Estepar, R.S.J.; Washko, G.R.; et al. Machine learning and prediction of all-cause mortality in COPD. Chest 2020, 158, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Zoabi, Y.; Deri-Rozov, S.; Shomron, N. Machine learning-based prediction of COVID-19 diagnosis based on symptoms. NPJ Digit. Med. 2021, 4, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Dritsas., E.; Alexiou., S.; Moustakas., K. Cardiovascular Disease Risk Prediction with Supervised Machine Learning Techniques. In Proceedings of the 8th International Conference on Information and Communication Technologies for Ageing Well and e-Health—ICT4AWE, INSTICC, Prague, Czech Republic, 22–24 April 2022; SciTePress: Setúbal, Portugal, 2022; pp. 315–321. [Google Scholar]
- Dritsas, E.; Trigka, M. Stroke risk prediction with machine learning techniques. Sensors 2022, 22, 4670. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chakraborty, G.; Chakraborty, B. Predicting the risk of chronic kidney disease (ckd) using machine learning algorithm. Appl. Sci. 2020, 11, 202. [Google Scholar] [CrossRef]
- Speiser, J.L.; Karvellas, C.J.; Wolf, B.J.; Chung, D.; Koch, D.G.; Durkalski, V.L. Predicting daily outcomes in acetaminophen-induced acute liver failure patients with machine learning techniques. Comput. Methods Programs Biomed. 2019, 175, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Yarasuri, V.K.; Indukuri, G.K.; Nair, A.K. Prediction of hepatitis disease using machine learning technique. In Proceedings of the 2019 IEEE Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), Palladam, India, 12–14 December 2019; pp. 265–269. [Google Scholar]
- Konstantoulas, I.; Kocsis, O.; Dritsas, E.; Fakotakis, N.; Moustakas, K. Sleep Quality Monitoring with Human Assisted Corrections. In Proceedings of the International Joint Conference on Computational Intelligence (IJCCI), SCIPTRESS, Valletta, Malta, 25–27 October 2021; pp. 435–444. [Google Scholar]
- Saba, T. Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges. J. Infect. Public Health 2020, 13, 1274–1289. [Google Scholar] [CrossRef]
- Brautbar, A.; Leary, E.; Rasmussen, K.; Wilson, D.P.; Steiner, R.D.; Virani, S. Genetics of familial hypercholesterolemia. Curr. Atheroscler. Rep. 2015, 17, 1–17. [Google Scholar] [CrossRef]
- Pina, A.; Helgadottir, S.; Mancina, R.M.; Pavanello, C.; Pirazzi, C.; Montalcini, T.; Henriques, R.; Calabresi, L.; Wiklund, O.; Macedo, M.P.; et al. Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning. Eur. J. Prev. Cardiol. 2020, 27, 1639–1646. [Google Scholar] [CrossRef]
- Banda, J.M.; Sarraju, A.; Abbasi, F.; Parizo, J.; Pariani, M.; Ison, H.; Briskin, E.; Wand, H.; Dubois, S.; Jung, K.; et al. Finding missed cases of familial hypercholesterolemia in health systems using machine learning. npj Digit. Med. 2019, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.J. Prediction model of hypercholesterolemia using body fat mass based on machine learning. J. Converg. Cult. Technol. 2019, 5, 413–420. [Google Scholar]
- García-d’Urso, N.; Climent-Pérez, P.; Sánchez-SanSegundo, M.; Zaragoza-Martí, A.; Fuster-Guillo, A.; Azorin-Lopez, J. A non-invasive approach for total cholesterol level prediction using machine learning. IEEE Access 2022, 10, 58566–58577. [Google Scholar] [CrossRef]
- Park, H.; Kim, K. Comparisons among machine learning models for the prediction of hypercholestrolemia associated with exposure to lead, mercury, and cadmium. Int. J. Environ. Res. Public Health 2019, 16, 2666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banowati, C.; Novianty, A.; Setianingsih, C. Cholesterol level detection based on iris recognition using convolutional neural network method. In Proceedings of the 2019 IEEE Conference on Sustainable Utilization and Development in Engineering and Technologies (CSUDET), Penang, Malaysia, 7–9 November 2019; pp. 116–121. [Google Scholar]
- Fazakis, N.; Dritsas, E.; Kocsis, O.; Fakotakis, N.; Moustakas, K. Long-Term Cholesterol Risk Prediction with Machine Learning Techniques in ELSA Database. In Proceedings of the 13th International Joint Conference on Computational Intelligence (IJCCI), SCIPTRESS, Online, 25–27 October 2021; pp. 445–450. [Google Scholar]
- ENGLISH LONGITUDINAL STUDY OF AGEING. Available online: https://www.elsa-project.ac.uk/ (accessed on 19 June 2022).
- Yi, S.W.; Yi, J.J.; Ohrr, H. Total cholesterol and all-cause mortality by sex and age: A prospective cohort study among 12.8 million adults. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Zou, Y.; Xin, Q.; Cai, Y.; Wang, Y.; Qin, X.; Ma, D. Dose–response relationship between body mass index and risks of all-cause mortality and disability among the elderly: A systematic review and meta-analysis. Clin. Nutr. 2019, 38, 1511–1523. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Lee, J. Effects of combined exercise and low carbohydrate ketogenic diet interventions on waist circumference and triglycerides in overweight and obese individuals: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 828. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.C.; Conell, C.; Ren, X.; Banki, N.M.; Chan, S.L.; Rao, V.A.; Melles, R.B.; Bhatt, D.L. Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N. Engl. J. Med. 2019, 381, 243–251. [Google Scholar] [CrossRef]
- Khirfan, G.; Tejwani, V.; Wang, X.; Li, M.; DiDonato, J.; Dweik, R.A.; Smedira, N.; Heresi, G.A. Plasma levels of high density lipoprotein cholesterol and outcomes in chronic thromboembolic pulmonary hypertension. PLoS ONE 2018, 13, e0197700. [Google Scholar]
- Barone Gibbs, B.; Hivert, M.F.; Jerome, G.J.; Kraus, W.E.; Rosenkranz, S.K.; Schorr, E.N.; Spartano, N.L.; Lobelo, F.; on Lifestyle, A.H.A.C.; on Cardiovascular, C.H.C.; et al. Physical Activity as a Critical Component of First-Line Treatment for Elevated Blood Pressure or Cholesterol: Who, What, and How?: A Scientific Statement From the American Heart Association. Hypertension 2021, 78, e26–e37. [Google Scholar] [CrossRef]
- Li, B.; Lei, S.S.; Su, J.; Cai, X.M.; Xu, H.; He, X.; Chen, Y.H.; Lu, H.X.; Li, H.; Qian, L.Q.; et al. Alcohol induces more severe fatty liver disease by influencing cholesterol metabolism. Evid.-Based Complement. Altern. Med. 2019, 2019, 7095684. [Google Scholar] [CrossRef]
- Gao, F.; Cui, C.Y. Dietary cholesterol intake and risk of gestational diabetes mellitus: A meta-analysis of observational studies. J. Am. Nutr. Assoc. 2022, 41, 107–115. [Google Scholar] [CrossRef]
- Ilyas, I.F.; Chu, X. Data Cleaning; Morgan & Claypool: San Rafael, CA, USA, 2019. [Google Scholar]
- Maldonado, S.; López, J.; Vairetti, C. An alternative SMOTE oversampling strategy for high-dimensional datasets. Appl. Soft Comput. 2019, 76, 380–389. [Google Scholar] [CrossRef]
- Pavithra, V.; Jayalakshmi, V. Hybrid feature selection technique for prediction of cardiovascular diseases. Mater. Today Proc. 2021, in press. [CrossRef]
- Tangirala, S. Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 612–619. [Google Scholar] [CrossRef]
- Gnanambal, S.; Thangaraj, M.; Meenatchi, V.; Gayathri, V. Classification algorithms with attribute selection: An evaluation study using WEKA. Int. J. Adv. Netw. Appl. 2018, 9, 3640–3644. [Google Scholar]
- Silveira, E.A.; Pagotto, V.; Barbosa, L.S.; Oliveira, C.d.; Pena, G.d.G.; Velasquez-Melendez, G. Accuracy of BMI and waist circumference cut-off points to predict obesity in older adults. Ciênc. Saúde Coletiva 2020, 25, 1073–1082. [Google Scholar] [CrossRef]
- Krishnan, S.; Geetha, S. Prediction of Heart Disease Using Machine Learning Algorithms. In Proceedings of the 2019 IEEE 1st International Conference on Innovations in Information and Communication Technology (ICIICT), Chennai, India, 25–26 April 2019; pp. 1–5. [Google Scholar]
- Cunningham, P.; Delany, S.J. k-Nearest neighbour classifiers-A Tutorial. ACM Comput. Surv. (CSUR) 2021, 54, 1–25. [Google Scholar] [CrossRef]
- Nusinovici, S.; Tham, Y.C.; Yan, M.Y.C.; Ting, D.S.W.; Li, J.; Sabanayagam, C.; Wong, T.Y.; Cheng, C.Y. Logistic regression was as good as machine learning for predicting major chronic diseases. J. Clin. Epidemiol. 2020, 122, 56–69. [Google Scholar] [CrossRef]
- Ani, R.; Jose, J.; Wilson, M.; Deepa, O. Modified rotation forest ensemble classifier for medical diagnosis in decision support systems. In Progress in Advanced Computing and Intelligent Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 137–146. [Google Scholar]
- Bhargava, N.; Sharma, G.; Bhargava, R.; Mathuria, M. Decision tree analysis on j48 algorithm for data mining. Proc. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2013, 3. [Google Scholar]
- Masih, N.; Naz, H.; Ahuja, S. Multilayer perceptron based deep neural network for early detection of coronary heart disease. Health Technol. 2021, 11, 127–138. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Yang, Y. The research of the fast SVM classifier method. In Proceedings of the 2015 IEEE 12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 18–20 December 2015; pp. 121–124. [Google Scholar]
- Dinesh, K.G.; Arumugaraj, K.; Santhosh, K.D.; Mareeswari, V. Prediction of cardiovascular disease using machine learning algorithms. In Proceedings of the 2018 IEEE International Conference on Current Trends towards Converging Technologies (ICCTCT), Coimbatore, India, 1–3 March 2018; pp. 1–7. [Google Scholar]
- Truong, X.L.; Mitamura, M.; Kono, Y.; Raghavan, V.; Yonezawa, G.; Truong, X.Q.; Do, T.H.; Tien Bui, D.; Lee, S. Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree. Appl. Sci. 2018, 8, 1046. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Shen, S.; Zhang, X.; Li, R.; Wang, S.; Zhou, B.; Wang, Z. Cardiovascular disease risk prediction based on random forest. In Proceedings of the International Conference on Healthcare Science and Engineering, Guilin, China, 10–12 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 31–43. [Google Scholar]
- Kumari, S.; Kumar, D.; Mittal, M. An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier. Int. J. Cogn. Comput. Eng. 2021, 2, 40–46. [Google Scholar] [CrossRef]
- Pavlyshenko, B. Using stacking approaches for machine learning models. In Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018; pp. 255–258. [Google Scholar]
- Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process. 2015, 5, 1. [Google Scholar]
- Waikato Environment for Knowledge Analysis. Available online: https://www.weka.io/ (accessed on 12 July 2022).
Min | Max | Mean ± stdv | |
---|---|---|---|
Age | 50 | 85 | 66.4 ± 9.5 |
BMI | 18.3 | 53.1 | 28.61 ± 5.02 |
Waist | 70 | 148.6 | 101.76 ± 13.18 |
SysBP | 90 | 201 | 136.6 ± 20.5 |
DiasBP | 13 | 108 | 70.27 ± 12.22 |
HDL | 19 | 114 | 50.94 ± 16.42 |
LDL | 51 | 328 | 157.6 ± 40.1 |
TotalChol | 75 | 360 | 208.49 ± 39.69 |
Feature | Pearson Rank | Feature | Gain Ratio | Feature | InfoGain Ratio | Feature | Random Forest (AUPRC) |
---|---|---|---|---|---|---|---|
TotChol | 0.6777 | TotChol | 0.3061 | TotChol | 0.5633 | TotChol | 0.3790 |
LDL | 0.6152 | LDL | 0.2171 | LDL | 0.3963 | LDL | 0.3165 |
HDL | 0.1366 | DiasBP | 0.1142 | DiasBP | 0.0283 | DiasBP | 0.0788 |
DiasBP | 0.1148 | Gender | 0.0085 | Gender | 0.0085 | Age | 0.0512 |
BMI | 0.1106 | Alcohol Consumption | 0.0079 | Alcohol Consumption | 0.0079 | BMI | 0.0262 |
Gender | 0.1038 | Hypertension | 0.0034 | Physical Activity | 0.0043 | Alcohol Consumption | 0.0242 |
Alcohol Consumption | 0.1042 | Physical Activity | 0.0029 | Hypertension | 0.0034 | HDL | 0.0182 |
Age | 0.0711 | Diabetes | 0.0027 | Diabetes | 0.0019 | SysBP | 0.0154 |
Hypertension | 0.0681 | SysBP | 0 | SysBP | 0 | Waist | 0.0151 |
Physical Activity | 0.0586 | HDL | 0 | HDL | 0 | Gender | 0.0145 |
Diabetes | 0.0520 | BMI | 0 | BMI | 0 | Hypertension | 0.0124 |
SysBP | 0.0502 | Waist | 0 | Waist | 0 | Diabetes | 0.0000 |
Waist | 0.0192 | Age | 0 | Age | 0 | Physical Activity | −0.0021 |
Model | Parameters |
---|---|
NB | useKernerEstimator = false |
LR | ridge = , useConjugateGradientDescent = false |
LMT | LR modesl at leaves errorOnProbabilities = false, fastRegression = false, numInstances = 15, useAIC = false |
DT | noPruning: false, MinVarianceProp = 0.001 numfolds = 3 |
RotF (using J48) | confidence_factor: 0.25, unpruned: false minimum_instances per_leaf_node default binary split: false |
RF | max_depth = 0, numIterations = 100 numFeatures = 0 |
ANN | hidden layers: ‘a’, learning rate: 0.3 momentum factor 0.2, training time 500 |
SVM | kernel type: linear |
K-NN | K = 3, 5 Search Algorithm: LinearNNSearch with Euclidean |
Stacking | Base Models:RF, RotF Meta-model:LR |
Soft Voting | Base Models:RF, RotF Average Probabilities |
Accuracy | Precision | Recall | F-Measure | AUC | |
---|---|---|---|---|---|
NB | 87.37% | 0.877 | 0.874 | 0.873 | 0.931 |
SVM | 88.40% | 0.884 | 0.884 | 0.884 | 0.884 |
LR | 87.63% | 0.876 | 0.876 | 0.876 | 0.927 |
ANN | 82.73% | 0.828 | 0.827 | 0.827 | 0.912 |
3-NN | 70.62% | 0.707 | 0.706 | 0.706 | 0.758 |
RotF | 90.98% | 0.911 | 0.910 | 0.910 | 0.939 |
LMT | 86.85% | 0.869 | 0.869 | 0.869 | 0.928 |
RF | 89.69% | 0.900 | 0.897 | 0.897 | 0.943 |
DT | 88.92% | 0.892 | 0.889 | 0.889 | 0.902 |
Stacking | 91.24% | 0.915 | 0.912 | 0.912 | 0.937 |
Soft Voting | 91.75% | 0.920 | 0.918 | 0.917 | 0.945 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dritsas, E.; Trigka, M. Machine Learning Methods for Hypercholesterolemia Long-Term Risk Prediction. Sensors 2022, 22, 5365. https://doi.org/10.3390/s22145365
Dritsas E, Trigka M. Machine Learning Methods for Hypercholesterolemia Long-Term Risk Prediction. Sensors. 2022; 22(14):5365. https://doi.org/10.3390/s22145365
Chicago/Turabian StyleDritsas, Elias, and Maria Trigka. 2022. "Machine Learning Methods for Hypercholesterolemia Long-Term Risk Prediction" Sensors 22, no. 14: 5365. https://doi.org/10.3390/s22145365
APA StyleDritsas, E., & Trigka, M. (2022). Machine Learning Methods for Hypercholesterolemia Long-Term Risk Prediction. Sensors, 22(14), 5365. https://doi.org/10.3390/s22145365