Analysis of Microstrip Line with Asymmetric Arch Type Cross-Sectional Structure Using Micro Pattern Transfer Printing Method
Abstract
:1. Introduction
2. Analysis
2.1. Materials and Methods
2.2. Simulation-Based Design Optimization
2.2.1. Analysis of the Top Copper Foil Properties
2.2.2. Optimization of Layer Properties
3. Implementation and Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, H.; Wang, D.; Xu, Y. A monolithic CMOS magnetic Hall sensor with high sensitivity and linearity characteristics. Sensors 2015, 15, 27359–27373. [Google Scholar] [CrossRef] [PubMed]
- Crescentini, M.; Biondi, M.; Romani, A.; Tartagni, M.; Sangiorgi, E. Optimum design rules for CMOS Hall sensors. Sensors 2017, 17, 765. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Wu, J.; Bao, B.; Mao, Q. A composite beam integrating an in-situ FPCB sensor membrane with PVDF arrays for modal curvature measurement. Measurement 2020, 166, 108241. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Lin, C.-L.; Lai, Y.-T.; Yang, Y.-J. A polymer-based capacitive sensing array for normal and shear force measurement. Sensors 2010, 10, 10211–10225. [Google Scholar] [CrossRef] [PubMed]
- Tasaki, T. Low transmission loss flexible substrates using low Dk/Df polyimide adhesives. TechConnect Briefs 2018, 4, 75–78. [Google Scholar]
- Zimmerman, M.; Smith, K.; Scavuzzo, W.; Dunbar, M.; Carney, T.; Wessel, R.; Thrasher, B.; Oliver, G.; Parisi, J. New liquid crystal polymer substrate for high frequency applications. Int. Symp. Microelectron. 2014, 2014, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Kiya, S.; Morizane, K.; Uchita, Y.; Kouchi, M. Thin flexible printed circuit supporting transmission rate from 1 to 10 Gbps. Sci. Tech. Rev. 2015, 9, 12–16. [Google Scholar]
- Tai, T.S.; Zuo, H.; He, S. 3D LIDAR based on FPCB mirror. Mechatronics 2022, 82, 102720. [Google Scholar] [CrossRef]
- Sheng, J.; Li, H.; Shen, S.; Ming, R.; Sun, B.; Wang, J.; Zhang, D.; Tang, Y. Investigation on chemical etching process of FPCB With 18 um line pitch. IEEE Access 2021, 9, 50872–50879. [Google Scholar] [CrossRef]
- Lee, K.B.; Kim, J.R.; Park, G.C.; Cho, H.K. Feasibility test of a liquid film thickness sensor on a flexible printed circuit board using a three-electrode conductance method. Sensors 2017, 17, 42. [Google Scholar] [CrossRef] [Green Version]
- Bae, B.; Kim, Y.; Kim, M.; Kwon, Y.; Cheon, J. Proposal of flat-coaxial cable structure and its design methodology based on FPCB process for 5G application. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 1–5. [Google Scholar]
- Le, H.K.; Van Nguyen, H.; Han, Y.; Kim, S. Multiple bus design methodology for low loss and low crosstalk with mesh ground in FPCB. In Proceedings of the 2020 IEEE International Symposium on Electromagnetic Compatibility and Signal/Power Integrity (EMCSI), Reno, NV, USA, 28 July–28 August 2020; pp. 578–580. [Google Scholar]
- Edwards, T.C. Foundations for Microstrip Circuit Design, 4th ed.; Wiley: New York, NY, USA, 2016; pp. 76–88. [Google Scholar]
- Pozar, M. Microwave Engineering, 4th ed.; Wiley: New York, NY, USA, 2012; pp. 165–178. [Google Scholar]
- Ellison, J.J.; Agili, S.S. A method of extracting the effective copper surface roughness of a PCB laminate in situ. IEEE Trans. Electromagn. Compat. 2018, 60, 1137–1146. [Google Scholar] [CrossRef]
- Kraus, J.D.; Fleisch, D.A. Electromagnetics with Applications, 5th ed.; Massachusetts Institute of Technology: Cambridge, MA, USA, 2011; pp. 35–115. [Google Scholar]
- Donaldson, C.R.; Zhang, L.; He, W.; Cross, A.W.; Ronald, K.; Whyte, C.G. Low-Loss transmission line for a 3.4-kW, 93-GHz Gyro-traveling-wave amplifier. IEEE Trans. Electron Devices 2020, 68, 364–368. [Google Scholar] [CrossRef]
Layer | Dielectric Constant | Dielectric Loss Tangent |
---|---|---|
Adhesive | 2.51 | 0.0226 |
PCT | 2.29 | 0.0068 |
3 GHz | 10 GHz | 20 GHz | |
---|---|---|---|
1 | 0.109 | 0.266 | 0.462 |
0.84 | 0.108 | 0.264 | 0.462 |
0.54 | 0.098 | 0.245 | 0.421 |
0.26 | 0.095 | 0.235 | 0.401 |
Layer | Conventional Method | MPTP Method |
---|---|---|
Thickness (µm) | Thickness (µm) | |
Top copper | 18 | 18 |
Top adhesive | - | 25 |
PCT | 50 | 50 |
Bottom adhesive | - | 5 |
Bottom copper | 18 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, S.; Choi, J.; Choi, K.; Kang, B.; Park, H.; Yang, Y. Analysis of Microstrip Line with Asymmetric Arch Type Cross-Sectional Structure Using Micro Pattern Transfer Printing Method. Sensors 2022, 22, 5613. https://doi.org/10.3390/s22155613
Woo S, Choi J, Choi K, Kang B, Park H, Yang Y. Analysis of Microstrip Line with Asymmetric Arch Type Cross-Sectional Structure Using Micro Pattern Transfer Printing Method. Sensors. 2022; 22(15):5613. https://doi.org/10.3390/s22155613
Chicago/Turabian StyleWoo, Seungmin, Jaehyeok Choi, Kwangjong Choi, Bokyeong Kang, Hwasun Park, and Youngoo Yang. 2022. "Analysis of Microstrip Line with Asymmetric Arch Type Cross-Sectional Structure Using Micro Pattern Transfer Printing Method" Sensors 22, no. 15: 5613. https://doi.org/10.3390/s22155613
APA StyleWoo, S., Choi, J., Choi, K., Kang, B., Park, H., & Yang, Y. (2022). Analysis of Microstrip Line with Asymmetric Arch Type Cross-Sectional Structure Using Micro Pattern Transfer Printing Method. Sensors, 22(15), 5613. https://doi.org/10.3390/s22155613