High Sensitivity Monitoring of VOCs in Air through FTIR Spectroscopy Using a Multipass Gas Cell Setup
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
3. Results and Discussion
3.1. Characterization and Statistical Analysis
3.2. Curve Calibrations for Styrene and Individual Interfering VOCs
3.3. Comparison with Laboratory Detection Setups
3.4. Quantitative Analysis of Binary and Ternary Mixtures of VOCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonald, C.; de Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef] [Green Version]
- Salthammer, T. Very volatile organic compounds: An understudied class of indoor air pollutants. Indoor Air. 2016, 26, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Lanyon, Y.H.; Marrazza, G.; Tothill, I.E.; Mascini, M. Benzene analysis in workplace air using an FIA-based bacterial biosensor. Biosens. Bioelectron. 2005, 20, 2089–2096. [Google Scholar] [CrossRef] [PubMed]
- Rizk, M.; Guo, F.F.; Verriele, M.; Ward, M.; Dusanter, S.; Blond, N.; Locoge, N.; Schoemaecker, C. Impact of material emissions and sorption of volatile organic compounds on indoor air quality in a low energy building: Field measurements and modeling. Indoor Air. 2018, 28, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Gozzi, F.; Della Ventura, G.; Marcelli, A. Mobile monitoring of particulate matter: State of art and perspectives. Atmospheric Pollut. Res. 2016, 7, 228–234. [Google Scholar] [CrossRef]
- Yadav, R.; Pandey, P. A Review on Volatile Organic Compounds (VOCs) as Environmental Pollutants: Fate and Distribution. Int. J. Plant Environ. 2018, 4, 14–26. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans IARC Monographs on the Evaluation of carcinogenic Risks to Humans. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr. Eval. Carcinog. Risks Hum. 2002, 82, 1–601. Available online: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono82.pdf (accessed on 1 January 2021).
- Li, J.A.; Pal, K.V.; Kannan, K. A review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environ. Chem. Ecotoxicol. 2021, 3, 91–116. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines of WHO for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide, Global Update 2005; WHO/SDE/PHE/OEH/06.02; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Galstyan, V.; Poli, N.; D’Arco, A.; Macis, S.; Lupi, S.; Comini, E. A novel approach for green synthesis of WO 3 nanomaterials and their highly selective chemical sensing properties. J. Mater. Chem. A 2020, 8, 20373–20385. [Google Scholar] [CrossRef]
- Galstyan, V.; D’Arco, A.; Di Fabrizio, M.; Poli, N.; Lupi, S.; Comini, E. Detection of volatile organic compounds: From chemical gas sensors to terahertz spectroscopy. Rev. Anal. Chem. 2021, 40, 33–57. [Google Scholar] [CrossRef]
- Radica, F.; Mura, S.; Carboni, D.; Malfatti, L.; Garroni, S.; Enzo, S.; Della Ventura, G.; Tranfo, G.; Marcelli, A.; Innocenzi, P. Phenyl-modified hybrid organic-inorganic microporous films as high efficient platforms for styrene sensing. Micropor. Mesopor. Mat. 2020, 294, 109877. [Google Scholar] [CrossRef]
- Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to? Environments 2017, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor Metal Oxides as Chemoresistive Sensors for Detecting Volatile Organic Compounds. Sensors 2019, 19, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhou, Q.; Peng, S.; Xu, L.; Zeng, W. Volatile Organic Compounds Gas Sensors Based on Molybdenum Oxides: A Mini Review. Front. Chem. 2020, 8, 339. [Google Scholar] [CrossRef]
- Bo, Y.; Xu, P.; Cai, S.; Yu, H.; Li, X. Detection of volatile-organic compounds (VOCs) in solution using cantilever-based gas sensors. Talanta 2018, 182, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Colman Lerner, J.E.; Sanchez, E.Y.; Sambeth, J.E.; Porta, A.A. Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmos. Environ. 2012, 55, 440–447. [Google Scholar] [CrossRef]
- Ketola, R.A.; Kiuru, J.T.; Terkiainen, V.; Kokkonen, J.T.; Rasanen, J.; Kotiaho, T. Detection of volatile organic compounds by temperature-programmed desorption combined with mass spectrometry and Fourier transform infrared spectroscopy. Anal. Chim. Acta 2006, 563, 245–251. [Google Scholar] [CrossRef]
- D’Arco, A.; Di Fabrizio, M.; Dolci, V.; Marcelli, A.; Petrarca, M.; Della Ventura, G.; Lupi, S. Characterization of volatile organic compounds (VOCs) in their liquid-phase by terahertz time-domain spectroscopy. Biomed. Opt. Express 2020, 11, 1–7. [Google Scholar] [CrossRef]
- D’Arco, A.; Rocco, D.; Magboo, F.J.P.; Moffa, C.; Della Ventura, G.; Marcelli, A.; Palumbo, L.; Mattiello, L.; Lupi, S.; Petrarca, M. Terahertz continuous wave spectroscopy: A portable advanced method for atmospheric gas sensing. Opt. Express 2022, 30, 19005–190016. [Google Scholar] [CrossRef]
- Radica, F.; Della Ventura, G.; Malfatti, L.; Cestelli Guidi, M.; D’Arco, A.; Grilli, A.; Marcelli, A.; Innocenzi, P. Real-time quantitative detection of styrene in atmosphere in presence of other volatile-organic compounds using a portable device. Talanta 2021, 233, 122510. [Google Scholar] [CrossRef]
- Lin, C.H.; Grant, R.H.; Heber, A.J.; Johnston, C.T. Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields. Atmos. Meas. Technol. 2019, 12, 3403–3415. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Griffiths, P.R. Encoding FT-IR Spectra in a Hopfield Network and Its Application to Compound Identification in Open-Path FT-IR Measurements. Anal Chem. 1999, 71, 3356–3364. [Google Scholar] [CrossRef]
- Sitnikov, D.S.; Romashevskiy, S.A.; Pronkin, A.A.; Ilina, I.V. Open-path gas detection using terahertz time-domain spectroscopy. J. Phys. Conf. Ser. 2019, 1147, 012061. [Google Scholar] [CrossRef] [Green Version]
- RAE Systems by Honeywell Staff. The Pid Handbook: Theory and Applications of Direct-Reading Photoionization Detectors, 3rd ed.; RAE Systems Inc.: San Jose, CA, USA, 2014; pp. 36–37, 150, 164. [Google Scholar]
- Choi, H.C.; Kertesz, M. Conformational Information from Vibrational Spectra of Styrene, trans-Stilbene, and cis-Stilbene. J. Phys. Chem. A 1997, 101, 3823–3831. [Google Scholar] [CrossRef]
- Granadino-Roldàn, J.M.; Fernàndez-Gòmez, M.; Navarro, A. The vibrational analysis of styrene, revisited. Chem. Phys. Lett. 2003, 372, 255–262. [Google Scholar] [CrossRef]
- Andrade, P.P.D.; de Barros, A.L.F.; Ding, J.; Rothard, H.; Boduch, P.; da Silveira, E.F. Acetone degradation by cosmic rays in the solar neighborhood and in the Galactic Centre. MNRAS 2014, 444, 3792–3801. [Google Scholar] [CrossRef] [Green Version]
- Ehbrecht, M.; Huisken, F. Vibrational Spectroscopy of Ethanol Molecules and Complexes Selectively Prepared in the Gas Phase and Adsorbed on Large Argon Clusters. J. Phys. Chem. A 1997, 101, 7768–7777. [Google Scholar] [CrossRef]
- Okuno, M. Hyper-Raman spectroscopy of alcohols excited at 532 nm: Methanol, ethanol, 1-propanol, and 2-propanol. J. Raman. Spectrosc. 2021, 52, 849–856. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.Z. A new approach to near-infrared spectral data analysis using independent component analysis. J. Chem. Inf. Comput. Sci. 2001, 41, 992–1001. [Google Scholar] [CrossRef] [Green Version]
- Duarte, M.L.; Ferreira, M.C.; Marvão, M.R.; Rocha, J. An optimized method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int. J. Mol. Sci. 2002, 31, 1–8. [Google Scholar]
VOCs | Slope (cm−2) | Intercept (cm−2) |
---|---|---|
Styrene | (1.3 ± 0.07) × 10−4 | (0.17 ± 0.04) × 10−3 |
Acetone | (3.3 ± 0.2) × 10−4 | (−0.2 ± 0.4) × 10−3 |
Ethanol | (5.0 ± 0.2) × 10−4 | (−5.5 ± 3.7) × 10−3 |
Isopropanol | (1.6 ± 0.1) × 10−4 | (−1.3 ± 0.7) × 10−3 |
Styrene (ppmv) | Ethanol (ppmv) | Acetone (ppmv) | Sum * (ppmv) | PID Lecture (ppmv) | |
---|---|---|---|---|---|
styrene + ethanol | (3.3 ± 0.3) | (27.2 ± 7.4) | // | (4.2 ± 0.6) | (5.3 ± 0.5) |
styrene + acetone | (4.64 ± 0.38) | // | (10.3 ± 1.2) | (8.4 ± 0.8) | (11.1 ± 1.0) |
acetone + ethanol | // | (20.2 ± 7.4) | (27.1 ± 2.1) | (10.5 ± 1.0) | (7.4 ± 0.7) |
styrene + acetone + ethanol | (6.6 ± 0.5) | (14.3 ± 7.4) | (5.6 ± 1.3) | (9.1 ± 1.2) | (9.9 ± 0.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Arco, A.; Mancini, T.; Paolozzi, M.C.; Macis, S.; Mosesso, L.; Marcelli, A.; Petrarca, M.; Radica, F.; Tranfo, G.; Lupi, S.; et al. High Sensitivity Monitoring of VOCs in Air through FTIR Spectroscopy Using a Multipass Gas Cell Setup. Sensors 2022, 22, 5624. https://doi.org/10.3390/s22155624
D’Arco A, Mancini T, Paolozzi MC, Macis S, Mosesso L, Marcelli A, Petrarca M, Radica F, Tranfo G, Lupi S, et al. High Sensitivity Monitoring of VOCs in Air through FTIR Spectroscopy Using a Multipass Gas Cell Setup. Sensors. 2022; 22(15):5624. https://doi.org/10.3390/s22155624
Chicago/Turabian StyleD’Arco, Annalisa, Tiziana Mancini, Maria Chiara Paolozzi, Salvatore Macis, Lorenzo Mosesso, Augusto Marcelli, Massimo Petrarca, Francesco Radica, Giovanna Tranfo, Stefano Lupi, and et al. 2022. "High Sensitivity Monitoring of VOCs in Air through FTIR Spectroscopy Using a Multipass Gas Cell Setup" Sensors 22, no. 15: 5624. https://doi.org/10.3390/s22155624
APA StyleD’Arco, A., Mancini, T., Paolozzi, M. C., Macis, S., Mosesso, L., Marcelli, A., Petrarca, M., Radica, F., Tranfo, G., Lupi, S., & Della Ventura, G. (2022). High Sensitivity Monitoring of VOCs in Air through FTIR Spectroscopy Using a Multipass Gas Cell Setup. Sensors, 22(15), 5624. https://doi.org/10.3390/s22155624