SASMOTE: A Self-Attention Oversampling Method for Imbalanced CSI Fingerprints in Indoor Positioning Systems
Abstract
:1. Introduction
- We propose a deep learning-based oversampling method to end-to-end deal with the imbalanced fingerprint database. In addition, a corresponding fingerprint dataset is collected and constructed for model training and testing. To the best of our knowledge, we are the first to study the problem of constructing a fingerprint database that encounters data imbalance.
- In the framework, we design a self-attention encoder-decoder to extract and integrate data features. Meanwhile, the SMOTE algorithm is integrated into the encoder-decoder to supplement the small number of sample data, which solves the problem of fuzzy features in high-dimensional data.
- Extensive experiments are conducted in real environments and the results show that the proposed method has better performance compared to existing oversampling methods. The new fingerprint library generated by SASMOTE is applicable to other localization methods, such as the 1D-MobileNet model.
2. Related Works
2.1. Machine Learning Based Methods
2.2. Deep Learning Based Methods
3. Background and Framework
3.1. Basic Ideas
3.2. Preliminaries on Channel State Information
3.3. Workflow of the Csi Fingerprint Localization System
3.3.1. Offline Stage
3.3.2. Online Stage
4. Our SASMOTE Model and Training Scheme
4.1. Smote Algorithm
4.2. SASMOTE Model
4.2.1. Self-Attention Encoder-Decoder
4.2.2. Enhanced Loss Function
4.3. Evaluation Model and Metrics
4.3.1. Location Estimation Model
4.3.2. Evaluation Metrics
5. Experiments
5.1. Experimental Setup
Algorithm 1 SASMOTE model. |
Require: |
Batches of imbalanced CSI fingerprints: ; |
number of minority classes: k; |
Model parameters: ; |
Learning Rate: ; |
Ensure: |
Balanced CSI data of the minority class point: S; |
Train the Encoder/Decoder: |
1: for epoch do |
2: ; |
3: ; |
4: ; |
5: ; |
6: ; |
7: ; |
8: ; |
9: ; |
10: ; |
11: end for |
Generate Simple: |
12: for do |
13: ; Select minority classes from the fingerprint database; |
14: ; |
15: ; |
16: ; |
17: end for |
5.2. Localization Performance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Zhao, S.; Yang, L.T.; Min, C.; Liu, H. NextMe: Localization Using Cellular Traces in Internet of Things. IEEE Trans. Ind. Inform. 2015, 11, 302–312. [Google Scholar] [CrossRef]
- Qiu, C.; Mutka, M.W. AirLoc: Mobile Robots Assisted Indoor Localization. In Proceedings of the 12th IEEE International Conference on Mobile Ad-Hoc and Sensor Systems (MASS), Dallas, TX, USA, 19–22 October 2015. [Google Scholar]
- Wang, Y.; Liu, J.; Chen, Y.; Gruteser, M.; Liu, H. E-Eyes: Device-Free Location-Oriented Activity Identification Using Fine-Grained WiFi Signatures. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014. [Google Scholar]
- Cidronali, A.; Maddio, S.; Giorgetti, G.; Manes, G. Analysis and Performance of a Smart Antenna for 2.45-GHz Single-Anchor Indoor Positioning. IEEE Trans. Microw. Theory Tech. 2010, 58, 21–31. [Google Scholar] [CrossRef]
- Yuan, W.; Ma, S.; Chen, C. TOA-Based Passive Localization in Quasi-Synchronous Networks. IEEE Commun. Lett. 2014, 18, 592–595. [Google Scholar]
- Ng, K.Y.; Lam, K.Y.; Cheng, Q.J.; Shum, K. An effective signal strength-based wireless location estimation system for tracking indoor mobile users. J. Comput. Syst. Sci. 2013, 79, 1005–1016. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, J.; Sheng, M.; Zheng, Y.; Li, J. Exploiting Fingerprint Correlation for Fingerprint-Based Indoor Localization: A Deep Learning Based Approach. IEEE Trans. Veh. Technol. 2021, 70, 5762–5774. [Google Scholar] [CrossRef]
- Xue, J.; Liu, J.; Sheng, M.; Shi, Y.; Li, J. A WiFi fingerprint based high-adaptability indoor localization via machine learning. China Commun. 2020, 17, 247–259. [Google Scholar] [CrossRef]
- Chen, M.; Liu, K.; Ma, J.; Gu, Y.; Dong, Z.; Liu, C. SWIM: Speed-Aware WiFi-Based Passive Indoor Localization for Mobile Ship Environment. IEEE Trans. Mob. Comput. 2021, 20, 765–779. [Google Scholar] [CrossRef]
- Sinha, R.S.; Hwang, S.H. Comparison of CNN Applications for RSSI-based Fingerprint Indoor Localization. Electronics 2019, 8, 989. [Google Scholar] [CrossRef] [Green Version]
- Maung Maung, N.A.; Lwi, B.Y.; Thida, S. An Enhanced RSS Fingerprinting-based Wireless Indoor Positioning using Random Forest Classifier. In Proceedings of the 2020 International Conference on Advanced Information Technologies (ICAIT), Yangon, Myanmar, 4–5 November 2020; pp. 59–63. [Google Scholar] [CrossRef]
- Shi, S.; Sigg, S.; Chen, L.; Ji, Y. Accurate Location Tracking From CSI-Based Passive Device-Free Probabilistic Fingerprinting. IEEE Trans. Veh. Technol. 2018, 67, 5217–5230. [Google Scholar] [CrossRef] [Green Version]
- Yao, B.; Li, W.; Wei, D.; Zhang, W.; Li, X. Topology Construction Based on Indoor Crowdsourcing Data using Manifold Learning: Evaluation of Algorithms and Key Parameters. In Proceedings of the 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, 29 November–2 December 2021. [Google Scholar] [CrossRef]
- Pulkkinen, T.; Roos, T.; Myllymäki, P. Semi-supervised learning for wlan positioning. In Proceedings of the International Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 355–362. [Google Scholar]
- Gu, Z.; Chen, Z.; Zhang, Y.; Zhu, Y.; Lu, M.; Chen, A. Reducing fingerprint collection for indoor localization. Comput. Commun. 2016, 83, 56–63. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J.; Kim, S. Gaussian-based SMOTE algorithm for solving skewed class distributions. Int. J. Fuzzy Log. Intell. Syst. 2017, 17, 229–234. [Google Scholar] [CrossRef]
- Douzas, G.; Bacao, F.; Last, F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf. Sci. 2018, 465, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Chang, K.S.; Hoog, F.D.; Zhuo, C.; Peng, C.; Dan, C.P. Interference Mitigation Based on Bayesian Compressive Sensing for Wireless Localization Systems in Unlicensed Band. IEEE Trans. Veh. Technol. 2017, 66, 7038–7049. [Google Scholar]
- Luqyana, W.A.; Ahmadie, B.L.; Supianto, A.A. K-Nearest Neighbors Undersampling as Balancing Data for Cyber Troll Detection. In Proceedings of the 2019 International Conference on Sustainable Information Engineering and Technology (SIET), Lombok, Indonesia, 28–30 September 2019; pp. 322–325. [Google Scholar] [CrossRef]
- Zeng, M.; Zou, B.; Wei, F.; Liu, X.; Wang, L. Effective prediction of three common diseases by combining SMOTE with Tomek links technique for imbalanced medical data. In Proceedings of the 2016 IEEE International Conference of Online Analysis and Computing Science (ICOACS), Chongqing, China, 28–29 May 2016; pp. 225–228. [Google Scholar] [CrossRef]
- Hoyos-Osorio, J.; Alvarez-Meza, A.; Daza-Santacoloma, G.; Orozco-Gutierrez, A.; Castellanos-Dominguez, G. Relevant information undersampling to support imbalanced data classification. Neurocomputing 2021, 436, 136–146. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Q.; Wu, Q.; Fan, Z. A novel oversampling technique for class-imbalanced learning based on SMOTE and natural neighbors. Inf. Sci. 2021, 565, 438–455. [Google Scholar] [CrossRef]
- Mishra, N.K.; Singh, P.K. Feature construction and smote-based imbalance handling for multi-label learning. Inf. Sci. 2021, 563, 342–357. [Google Scholar] [CrossRef]
- Yi, X.; Xu, Y.; Hu, Q.; Krishnamoorthy, S.; Li, W.; Tang, Z. ASN-SMOTE: A synthetic minority oversampling method with adaptive qualified synthesizer selection. Complex Intell. Syst. 2022, 8, 2247–2272. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25. [Google Scholar]
- Douzas, G.; Bacao, F. Effective data generation for imbalanced learning using conditional generative adversarial networks. Expert Syst. Appl. 2018, 91, 464–471. [Google Scholar] [CrossRef]
- Yu, C.; Bi, X.; Fan, Y.; Han, Y.; Kuai, Y. LightPIVNet: An effective convolutional neural network for particle image velocimetry. IEEE Trans. Instrum. Meas. 2021, 70, 1–15. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 27. [Google Scholar]
- Fiore, U.; De Santis, A.; Perla, F.; Zanetti, P.; Palmieri, F. Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Inf. Sci. 2019, 479, 448–455. [Google Scholar] [CrossRef]
- Li, Q.; Qu, H.; Liu, Z.; Zhou, N.; Sun, W.; Sigg, S.; Li, J. AF-DCGAN: Amplitude Feature Deep Convolutional GAN for Fingerprint Construction in Indoor Localization System. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 5, 468–480. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-based Fingerprinting for Indoor Localization: A Deep Learning Approach. IEEE Trans. Veh. Technol. 2016, 66, 763–776. [Google Scholar] [CrossRef] [Green Version]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 7354–7363. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Jiang, X.; Wu, K.; Yi, Y.; Ni, L.M. FIFS: Fine-Grained Indoor Fingerprinting System. In Proceedings of the Computer Communications and Networks (ICCCN), Munich, Germany, 30 July–2 August 2012. [Google Scholar]
Method | Unbalanced Ratio:5 | Unbalanced Ratio:10 | Unbalanced Ratio:20 | ||||||
---|---|---|---|---|---|---|---|---|---|
ARMSE | Min. | Max. | ARMSE | Min. | Max. | ARMSE | Min. | Max. | |
Initial dataset | 0.85 | 0.06 | 2.64 | 1.14 | 0.07 | 3.00 | 1.54 | 0.09 | 3.00 |
Gaussian_SMOTE | 0.74 | 0.06 | 2.51 | 0.84 | 0.06 | 2.75 | 1.28 | 0.06 | 2.97 |
Kmeans_SMOTE | 0.91 | 0.03 | 2.68 | 0.95 | 0.03 | 2.84 | 1.34 | 0.03 | 3.00 |
NANSMOTE | 0.79 | 0.04 | 2.54 | 0.86 | 0.04 | 2.78 | 1.40 | 0.04 | 3.00 |
FCSMI | 0.72 | 0.03 | 2.43 | 0.80 | 0.03 | 2.67 | 1.18 | 0.03 | 3.00 |
ASNSMOTE | 0.76 | 0.04 | 2.64 | 0.89 | 0.04 | 2.79 | 1.27 | 0.04 | 3.00 |
SASMOTE | 0.70 | 0.02 | 2.53 | 0.72 | 0.02 | 2.57 | 0.76 | 0.02 | 2.62 |
Method | Unbalanced Ratio:5 | Unbalanced Ratio:10 | Unbalanced Ratio:20 | ||||||
---|---|---|---|---|---|---|---|---|---|
ARMSE | Min. | Max. | ARMSE | Min. | Max. | ARMSE | Min. | Max. | |
FIFS | 1.13 | 0.02 | 2.84 | 1.17 | 0.02 | 2.91 | 1.21 | 0.02 | 3.00 |
DeepFi | 0.91 | 0.02 | 2.74 | 0.96 | 0.02 | 2.78 | 1.03 | 0.02 | 2.83 |
1D-MobileNet | 0.70 | 0.02 | 2.53 | 0.72 | 0.02 | 2.57 | 0.76 | 0.02 | 2.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, A.; Cheng, L.; Yu, C. SASMOTE: A Self-Attention Oversampling Method for Imbalanced CSI Fingerprints in Indoor Positioning Systems. Sensors 2022, 22, 5677. https://doi.org/10.3390/s22155677
Liu A, Cheng L, Yu C. SASMOTE: A Self-Attention Oversampling Method for Imbalanced CSI Fingerprints in Indoor Positioning Systems. Sensors. 2022; 22(15):5677. https://doi.org/10.3390/s22155677
Chicago/Turabian StyleLiu, Ankang, Lingfei Cheng, and Changdong Yu. 2022. "SASMOTE: A Self-Attention Oversampling Method for Imbalanced CSI Fingerprints in Indoor Positioning Systems" Sensors 22, no. 15: 5677. https://doi.org/10.3390/s22155677
APA StyleLiu, A., Cheng, L., & Yu, C. (2022). SASMOTE: A Self-Attention Oversampling Method for Imbalanced CSI Fingerprints in Indoor Positioning Systems. Sensors, 22(15), 5677. https://doi.org/10.3390/s22155677