Impact of Laser Intensity Noise on Dual-Comb Absolute Ranging Precision
Abstract
:1. Introduction
2. Dual-Comb Ranging Using Linear Optical Sampling
2.1. Design of Femtosecond Lasers
2.2. Design of Distance Measurement Setup
2.3. Intensity Noise of Signal Laser Output
2.4. Comparison of Distance Measurement Results
3. Dual-Comb Ranging Using Nonlinear Asynchronous Optical Sampling
3.1. Design of Dual-Comb Ranging Setup
3.2. Measurement Result Based on OC or BOC
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diddams, S.A.; Vahala, K.; Udem, T. Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science 2020, 369, 6501. [Google Scholar] [CrossRef] [PubMed]
- Udem, T.; Holzwarth, R.; Hänsch, T.W. Optical frequency metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.J.; Diddams, S.A.; Ranka, J.K.; Stentz, A.; Windeler, R.S.; Hall, J.L.; Cundiff, S.T. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 2000, 288, 635–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.; Schnatz, H.; Hollberg, L.W. Optical frequency combs: From frequency metrology to optical phase control. IEEE J. Sel. Top. Quant. Electron. 2003, 9, 1041–1058. [Google Scholar]
- Newbury, N.R. Searching for applications with a fine-tooth comb. Nat. Photonics 2011, 5, 186–188. [Google Scholar] [CrossRef]
- Hou, D.; Lee, C.C.; Yang, Z.; Schibli, T.R. Timing jitter characterization of mode-locked lasers with <1 zs/ √Hz resolution using a simple optical heterodyne technique. Opt. Lett. 2015, 40, 2985–2988. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Song, Y.; Li, T.; Wang, C.; Zhao, X.; Zheng, Z.; Hu, M. Timing jitter of the dual-comb mode-locked laser: A quantum origin and the ultimate effect on high-speed time- and frequency-domain metrology. IEEE J. Sel. Top. Quant. Electron. 2018, 24, 1102610. [Google Scholar] [CrossRef]
- Cui, M.; Schouten, R.N.; Bhattacharya, N.; van den Berg, S.A. Experimental demonstration of distance measurement with a femtosecond frequency comb laser. J. Eur. Opt. Soc. 2008, 3, 08003. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zhang, F.; Cao, S.; Xing, S.; Qu, X. Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser. Opt. Express 2014, 22, 10380–10397. [Google Scholar] [CrossRef] [PubMed]
- Ye, J. Absolute measurement of a long, arbitrary distance to less than an optical fringe. Opt. Lett. 2004, 29, 1153–1155. [Google Scholar] [CrossRef]
- Van den Berg, S.A.; Persijin, S.T.; Kok, G.J.P.; Zeitouny, M.G.; Bhattacharya, N. Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Phys. Rev. Lett. 2012, 108, 183901. [Google Scholar] [CrossRef] [PubMed]
- Minoshima, K.; Matsumoto, H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. 2000, 39, 5512–5517. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, Y.J.; Lee, K.; Lee, S.; Kim, S.W. Time-of-flight measurement with femtosecond light pulses. Nat. Photonics 2011, 5, 186–188. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, F.; Li, J.; Cao, S.; Meng, X.; Qu, X. Intensity evaluation using a femteosecond pulse laser for absolute distance measurement. Appl. Opt. 2015, 54, 5581–5590. [Google Scholar] [CrossRef]
- Coddington, I.; Swann, W.C.; Nenadovic, L.; Newbury, N.R. Rapid and precise absolute distance measurements at long range. Nat. Photonics 2009, 3, 351–356. [Google Scholar] [CrossRef]
- Liu, T.A.; Newbury, N.R.; Coddington, I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers. Opt. Express 2011, 19, 18501–18509. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Han, S.; Lee, K.; Bae, E.; Kim, S.; Lee, S.; Kim, S.; Kim, Y. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength. Meas. Sci. Technol. 2013, 24, 045201. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, G. Dual-comb ranging. Engineering 2018, 4, 772–778. [Google Scholar] [CrossRef]
- Kim, W.; Jang, J.; Han, S.; Kim, S.; Oh, J.S.; Kim, B.S.; Kim, Y.; Kim, S. Absolute laser ranging by time-of-flight measurement of ultrashort light pulses. J. Opt. Soc. Am. A 2020, 37, B27–B35. [Google Scholar] [CrossRef]
- Wu, G.; Xiong, S.; Ni, K.; Zhu, Z.; Zhou, Q. Parameter optimization of a dual-comb ranging system by using a numerical simulation method. Opt. Express 2015, 23, 32044–32053. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, W.; He, M.; Cao, S.; Miao, D.; Lin, B.; Xie, J.; Yang, W.; Li, J. Experimental realization and characterization of a two-color dual-comb system for practical large-scale absolute distance measurements. Opt. Laser Eng. 2022, 151, 106900. [Google Scholar] [CrossRef]
- Wu, G.; Zhou, Q.; Shen, L.; Ni, K.; Zeng, X.; Li, Y. Experimental optimization of the repetition rate difference in the dual-comb ranging system. Appl. Phys. Express 2014, 7, 106602. [Google Scholar] [CrossRef]
- Martin, B.; Feneyrou, P.; Dolfi, D.; Martin, A. Performance and limitations of dual-comb based ranging systems. Opt. Express 2022, 30, 4005–4016. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, G.; Ni, K.; Zhou, Q.; Wu, G. Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth. Meas. Sci. Technol. 2018, 29, 045007. [Google Scholar] [CrossRef]
- Hu, D.; Wu, Z.; Cao, H.; Shi, Y.; Li, R.; Tian, H.; Song, Y.; Hu, M. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser. Opt. Commun. 2021, 482, 126566. [Google Scholar] [CrossRef]
- Shi, H.; Song, Y.; Liang, F.; Xu, L.; Hu, M.; Wang, C. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers. Opt. Express 2015, 23, 14057–14069. [Google Scholar] [CrossRef] [PubMed]
- Kefei, H.; Kaszubowska, A.; Eamonn, P.M.; Guang, S.; Prince, M.A.; Nandini, B. Absolute distance measurement with a gain-switched dual optical frequency comb. Opt. Express 2021, 29, 8108–8116. [Google Scholar]
- Zhang, H.; Wei, H.; Wu, X.; Yang, H.; Li, Y. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Opt. Express 2014, 22, 6597–6604. [Google Scholar] [CrossRef]
- Zhou, S.; Lin, C.; Yang, Y.; Wu, G. Multi-pulse sampling dual-comb ranging measurement. Opt. Express 2020, 28, 4058–4066. [Google Scholar] [CrossRef]
- Jiang, R.; Zhou, S.; Wu, G. Aliasing-free dual-comb ranging system based on free-running fiber lasers. Opt. Express 2021, 29, 33527–33535. [Google Scholar] [CrossRef]
- Wright, H.; Sun, J.; McKendrick, D.; Weston, N.; Reid, D.T. Two-photon dual-comb lidar. Opt. Express 2021, 29, 37037–37047. [Google Scholar] [CrossRef] [PubMed]
- Toby, M.; Jinghua, S.; Derryck, T.R. Dynamic measurements at up to 130-khz sampling rates using ti: Sapphire dual-comb distance metrology. Opt. Express 2021, 29, 42119–42126. [Google Scholar]
- Shi, H.; Song, Y.; Liang, F.; Xu, L.; Hu, M.; Wang, C. Dual-comb absolute ranging using balanced optical cross-correlator as time-of-flight detector. In CLEO: Science and Innovations; Optical Society of America: Washington, DC, USA, 2015; p. SF2L.3. [Google Scholar]
- Dorrer, C.; Kilper, D.C.; Stuart, H.R.; Raybon, G.; Raymer, M.G. Linear optical sampling. IEEE Photon. Technol. Lett. 2003, 15, 1746–1748. [Google Scholar] [CrossRef]
- Dorrer, C. High-Speed measurements for optical telecommunication systems. IEEE J. Sel. Top. Quant. Electron. 2006, 12, 843–858. [Google Scholar] [CrossRef]
- Jung, U.; Choi, J.H.; Choo, H.T.; Kim, G.U.; Ryu, J.; Choi, H. Fully customized photoacoustic system using doubly q-switched Nd: YAG laser and multiple axes stages for laboratory applications. Sensors 2022, 22, 2621. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, J.; Wang, Y.; Ji, R.; Liu, D.; Zhou, W. Phase distortion correction in dual-comb ranging system. Meas. Sci. Technol. 2017, 28, 075201. [Google Scholar]
- Xia, W.; Liu, Y.; He, M.; Cao, S.; Yang, W.; Zhang, F.; Miao, D.; Li, J. Numerical analyses of key parameters of nonlinear asynchronous optical sampling using dual-comb system. Acta Phys. Sin. 2021, 70, 88–97. [Google Scholar] [CrossRef]
- Haus, H.A.; Mecozzi, A. Noise of mode-locked lasers. IEEE J. Sel. Top. Quant. Electron. 1993, 29, 983–996. [Google Scholar] [CrossRef]
- Chen, J.; Sickler, J.W.; Ippen, E.P.; Kärtner, F.X. High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167fs soliton Er-fiber laser. Opt. Lett. 2007, 32, 1566–1568. [Google Scholar] [CrossRef]
- Hänsel, W.; Hoogland, H.; Giunta, M.; Schmid, S.; Steinmetz, T.; Doubek, R.; Mayer, P.; Dobner, S.; Cleff, C.; Fischer, M.; et al. All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation. Appl. Phys. B 2017, 123, 41. [Google Scholar] [CrossRef] [Green Version]
- Kan, W.; Perry, P.S.; Sheel, A.; Chunmei, O.; Jia, H.W.; Huy, Q.L.; Kenneth, E.K.L. Noise conversion from pump to the passively mode-locked fiber lasers at 1.5μm. Opt. Lett. 2012, 37, 1901–1903. [Google Scholar]
- Ning, B.; Hou, D.; Du, P.; Zhao, J. Long-term repetition frequency stabilization of passively mode-locked fiber lasers using high-frequency harmonic synchronization. IEEE J. Quantum Electron. 2013, 49, 503–510. [Google Scholar] [CrossRef]
- Klio, I.K.; O’Mahony, M.J. Relative intensity noise for laser diodes with arbitrary amounts of optical feedback. IEEE J. Sel. Top. Quant. Electron. 1998, 34, 1438–1446. [Google Scholar]
- Liao, R.; Mei, C.; Song, Y.; Demircan, A.; Steinmeyer, G. Spontaneous emission noise in mode-locked lasers and frequency combs. Phys. Rev. Appl. 2020, 102, 013506. [Google Scholar] [CrossRef]
- Pi, Y.; Tian, H.; Li, R.; Han, Y.; Song, Y.; Hu, M. Timing jitter and intensity noise characterization of a 122-MHz all-pm NALM mode-locked fiber laser. IEEE Photonic Technol. Lett. 2021, 33, 1439–1442. [Google Scholar] [CrossRef]
- Huang, S.; Cirmi, G.; Moses, J.; Hong, K.; Bhardwaj, S.; Birge, J.R.; Chen, L.; Li, E.; Eggleton, B.J.; Cerullo, G.; et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nat. Photonics 2011, 5, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Schibli, T.R.; Kuzucu, O.; Kim, J.; Ippen, E.P.; Fujimoto, J.G.; Kaertner, F.X.; Scheuer, V.; Angelow, G. Toward sing-cycle laser systems. IEEE J. Sel. Top. Quant. Electron. 2003, 9, 990–1001. [Google Scholar] [CrossRef]
- Renninger, W.H.; Chong, A.; Wise, F.W. Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers. IEEE J. Sel. Top. Quant. Electron. 2012, 18, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Fermann, M.E.; Hartl, I. Ultrafast fiber laser technology. IEEE J. Sel. Top. Quant. 2009, 15, 191–206. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Shi, H.; Wang, C.; Hu, M.; Song, Y. Impact of Laser Intensity Noise on Dual-Comb Absolute Ranging Precision. Sensors 2022, 22, 5770. https://doi.org/10.3390/s22155770
Wang J, Shi H, Wang C, Hu M, Song Y. Impact of Laser Intensity Noise on Dual-Comb Absolute Ranging Precision. Sensors. 2022; 22(15):5770. https://doi.org/10.3390/s22155770
Chicago/Turabian StyleWang, Jiaqi, Haosen Shi, Chunze Wang, Minglie Hu, and Youjian Song. 2022. "Impact of Laser Intensity Noise on Dual-Comb Absolute Ranging Precision" Sensors 22, no. 15: 5770. https://doi.org/10.3390/s22155770
APA StyleWang, J., Shi, H., Wang, C., Hu, M., & Song, Y. (2022). Impact of Laser Intensity Noise on Dual-Comb Absolute Ranging Precision. Sensors, 22(15), 5770. https://doi.org/10.3390/s22155770