Dual-Biometric Human Identification Using Radar Deep Transfer Learning
Abstract
:1. Introduction
- The use of the radar-based heart sound as a biometric identifier.
- Combining two biometrics to improve the overall accuracy of the system and add flexibility.
- Testing the system in an actual scenario to evaluate its performance as an identification platform.
2. Proposed Methodology
2.1. Heart Sound as a Biometric Identifier
2.2. Gait as a Biometric Identifier
2.3. Classification Using Deep Transfer Learning
2.4. Image Augmentation Technique
2.5. Joint Probability Mass Function (PMF) Method
2.6. Practical Testing
3. Experimental Results
3.1. DCNN Training Results
3.2. Practical Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jalalvand, A.; Vandersmissen, B.; De Neve, W.; Mannens, E. Radar Signal Processing for Human Identification by Means of Reservoir Computing Networks. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019. [Google Scholar] [CrossRef] [Green Version]
- Cao, P.; Xia, W.; Li, Y. Heart ID: Human Identification Based on Radar Micro-Doppler Signatures of the Heart Using Deep Learning. Remote Sens. 2019, 11, 1220. [Google Scholar] [CrossRef] [Green Version]
- Ni, Z.; Huang, B. Open-Set Human Identification Based on Gait Radar Micro-Doppler Signatures. IEEE Sens. J. 2021, 21, 8226–8233. [Google Scholar] [CrossRef]
- Yang, Y.; Hou, C.; Lang, Y.; Yue, G.; He, Y.; Xiang, W. Person Identification Using Micro-Doppler Signatures of Human Motions and UWB Radar. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 366–368. [Google Scholar] [CrossRef]
- Papanastasiou, V.S.; Trommel, R.P.; Harmanny, R.I.A.; Yarovoy, A. Deep Learning-Based Identification of Human Gait by Radar Micro-Doppler Measurements. In Proceedings of the 2020 17th European Radar Conference (EuRAD), Utrecht, The Netherlands, 10–15 January 2021. [Google Scholar] [CrossRef]
- Wang, J.; She, M.; Nahavandi, S.; Kouzani, A. A Review of Vision-Based Gait Recognition Methods for Human Identification. In Proceedings of the 2010 International Conference on Digital Image Computing: Techniques and Applications, Sydney, NSW, Australia, 1–3 December 2010. [Google Scholar] [CrossRef] [Green Version]
- Boles, W.W.; Boashash, B. A Human Identification Technique Using Images of the Iris and Wavelet Transform. IEEE Trans. Signal Proc. 1998, 46, 1185–1188. [Google Scholar] [CrossRef] [Green Version]
- Sokolova, A.; Konushin, A. Human Identification by Gait from Event-Based Camera. In Proceedings of the 2019 16th International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 27–31 May 2019. [Google Scholar] [CrossRef]
- Arora, S.; Bhatia, M.P.S. A Computer Vision System for Iris Recognition Based on Deep Learning. In Proceedings of the 2018 IEEE 8th International Advance Computing Conference (IACC), Greater Noida, India, 14–15 December 2018. [Google Scholar] [CrossRef]
- Ma, S.; Zanma, T.; Ishida, M. Human Identification Based on Human Skill Models. In Proceedings of the 2009 WRI Global Congress on Intelligent Systems, Xiamen, China, 19–21 May 2009. [Google Scholar] [CrossRef]
- Park, J.; Javier, R.; Moon, T.; Kim, Y. Micro-Doppler Based Classification of Human Aquatic Activities via Transfer Learning of Convolutional Neural Networks. Sensors 2016, 16, 1990. [Google Scholar] [CrossRef]
- Seyfioglu, M.S.; Ozbayoglu, A.M.; Gurbuz, S.Z. Deep Convolutional Autoencoder for Radar-Based Classification of Similar Aided and Unaided Human Activities. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1709–1723. [Google Scholar] [CrossRef]
- Kang, M.; Ji, K.; Leng, X.; Xing, X.; Zou, H. Synthetic Aperture Radar Target Recognition with Feature Fusion Based on a Stacked Autoencoder. Sensors 2017, 17, 192. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, Y.; Jing, X. A Survey of Deep Learning-Based Human Activity Recognition in Radar. Remote Sens. 2019, 11, 1068. [Google Scholar] [CrossRef] [Green Version]
- Klarenbeek, G.; Harmanny, R.I.A.; Cifola, L. Multi-Target Human Gait Classification Using LSTM Recurrent Neural Networks Applied to Micro-Doppler. In Proceedings of the 2017 European Radar Conference (EURAD), Nuremberg, Germany, 11–13 October 2017. [Google Scholar] [CrossRef]
- Addabbo, P.; Bernardi, M.L.; Biondi, F.; Cimitile, M.; Clemente, C.; Orlando, D. Temporal Convolutional Neural Networks for Radar Micro-Doppler Based Gait Recognition. Sensors 2021, 21, 381. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Huang, B. Human Identification Based on Natural Gait Micro-Doppler Signatures Using Deep Transfer Learning. IET Radar Sonar Navig. 2020, 14, 1640–1646. [Google Scholar] [CrossRef]
- Tahmoush, D.; Silvious, J. Radar Micro-Doppler for Long Range Front-View Gait Recognition. In Proceedings of the 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, Washington, DC, USA, 28–30 September 2009. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, H.; Yao, Y.; Liu, C.; Jian, P.; Wang, P.; Du, L.; Chen, X.; Fang, Z.; Wu, Y. Heart Signatures: Open-Set Person Identification Based on Cardiac Radar Signals. Biomed. Signal Processing Control 2022, 72, 103306. [Google Scholar] [CrossRef]
- Will, C.; Shi, K.; Schellenberger, S.; Steigleder, T.; Michler, F.; Fuchs, J.; Weigel, R.; Ostgathe, C.; Koelpin, A. Radar-Based Heart Sound Detection. Sci. Rep. 2018, 8, 11551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, K.; Schellenberger, S.; Will, C.; Steigleder, T.; Michler, F.; Fuchs, J.; Weigel, R.; Ostgathe, C.; Koelpin, A. A Dataset of Radar-Recorded Heart Sounds and Vital Signs Including Synchronised Reference Sensor Signals. Sci. Data 2020, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Phua, K.; Chen, J.; Dat, T.H.; Shue, L. Heart Sound as a Biometric. Pattern Recognit. 2008, 41, 906–919. [Google Scholar] [CrossRef]
- Wagner, S.; Pham, A.-V. Standoff Non-Line-of-Sight Vibration Sensing Using Millimeter—Wave Radar. In Proceedings of the 2020 17th European Radar Conference (EuRAD), Utrecht, The Netherlands, 10–15 January 2021. [Google Scholar] [CrossRef]
- Wagner, S.; Alkasimi, A.; Pham, A.-V. Detecting the Presence of Intrusive Drilling in Secure Transport Containers Using Non-Contact Millimeter-Wave Radar. Sensors 2022, 22, 2718. [Google Scholar] [CrossRef] [PubMed]
- Classify Time Series Using Wavelet Analysis and Deep Learning—MATLAB & Simulink Example. Available online: https://www.mathworks.com/help/wavelet/ug/classify-time-series-using-wavelet-analysis-and-deep-learning.html (accessed on 14 June 2022).
- Programming Chirp Parameters in TI Radar Devices Application Report. Available online: https://www.ti.com/lit/an/swra553a/swra553a.pdf?ts=1655130833042 (accessed on 14 June 2022).
- Kim, Y.; Moon, T. Human Detection and Activity Classification Based on Micro-Doppler Signatures Using Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 8–12. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Addabbo, P.; Bernardi, M.L.; Biondi, F.; Cimitile, M.; Clemente, C.; Orlando, D. Gait Recognition Using FMCW Radar and Temporal Convolutional Deep Neural Networks. In Proceedings of the 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy, 22–24 June 2020. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Jing, X. A Deep Multi-Task Network for Activity Classification and Person Identification with Micro-Doppler Signatures. In Proceedings of the 2019 International Radar Conference (RADAR), Pisa, Italy, 22–24 June 2019. [Google Scholar] [CrossRef]
- Abdulatif, S.; Aziz, F.; Armanious, K.; Kleiner, B.; Yang, B.; Schneider, U. Person Identification and Body Mass Index: A Deep Learning-Based Study on Micro-Dopplers. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019. [Google Scholar] [CrossRef] [Green Version]
- Trommel, R.P.; Harmanny, R.I.A.; Cifola, L.; Driessen, J.N. Multi-Target Human Gait Classification Using Deep Convolutional Neural Networks on Micro-Doppler Spectrograms. In Proceedings of the 2016 European Radar Conference (EuRAD), London, UK, 5–7 October 2016. [Google Scholar]
- Cao, P.; Xia, W.; Ye, M.; Zhang, J.; Zhou, J. Radar-ID: Human Identification Based on Radar Micro-Doppler Signatures Using Deep Convolutional Neural Networks. IET Radar Sonar Navig. 2018, 12, 729–734. [Google Scholar] [CrossRef]
- Ritchie, M.; Ash, M.; Chen, Q.; Chetty, K. Through Wall Radar Classification of Human Micro-Doppler Using Singular Value Decomposition Analysis. Sensors 2016, 16, 1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Value |
---|---|
Carrier frequency (GHz) | 77 |
Chirp duration (ms) | 1 |
Frequency slope (MHz/μs) | 4 |
ADC sampling rate (ksps) | 512 |
Number of ADC samples per chirp | 256 |
Number of chirps per frame | 1 |
Chirp repetition interval (ms) | 5 |
Number of chirps | 2000 |
Tx/Rx channels | 1/4 |
Parameter | Value |
---|---|
Carrier frequency (GHz) | 77 |
Chirp duration (μs) | 200 |
Frequency slope (MHz/μs) | 20 |
ADC sampling rate (ksps) | 3000 |
Number of ADC samples per chirp | 256 |
Number of chirps per frame | 100 |
Chirp Repetition Interval (ms) | 30 |
Number of chirps | 200 |
Tx/Rx channels | 1/4 |
Parameter | Value |
---|---|
Initial Learning Rate | 0.0001 |
Gradient Decay Factor | 0.95 |
Squared Gradient Decay Factor | 0.99 |
Max Epochs | 30 |
Mini-Batch Size | 25 |
Heart sound without the rotation technique | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
1 | 0.18 | 0.27 | 0.00 | 0.18 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.09 | |
2 | 0.00 | 0.45 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.09 | 0.09 | |
3 | 0.00 | 0.00 | 0.27 | 0.27 | 0.00 | 0.09 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | |
4 | 0.00 | 0.09 | 0.18 | 0.45 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | |
5 | 0.00 | 0.00 | 0.09 | 0.09 | 0.18 | 0.00 | 0.00 | 0.36 | 0.09 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | |
6 | 0.00 | 0.18 | 0.00 | 0.00 | 0.09 | 0.27 | 0.00 | 0.09 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.09 | |
7 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.09 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.45 | |
8 | 0.00 | 0.09 | 0.00 | 0.27 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | 0.09 | |
9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.27 | 0.64 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
10 | 0.00 | 0.00 | 0.00 | 0.27 | 0.09 | 0.00 | 0.00 | 0.18 | 0.00 | 0.18 | 0.00 | 0.00 | 0.18 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | |
11 | 0.00 | 0.27 | 0.00 | 0.09 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | 0.00 | 0.09 | 0.18 | |
12 | 0.00 | 0.00 | 0.18 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.55 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
13 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.73 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | |
14 | 0.00 | 0.00 | 0.00 | 0.18 | 0.27 | 0.00 | 0.00 | 0.18 | 0.00 | 0.36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
15 | 0.00 | 0.36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.45 | 0.09 | 0.00 | 0.09 | |
16 | 0.09 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | 0.00 | 0.00 | 0.36 | |
17 | 0.00 | 0.36 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.18 | 0.00 | 0.27 | 0.00 | |
18 | 0.00 | 0.18 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.09 | 0.45 | |
Heart sound with the rotation technique | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
1 | 0.52 | 0.08 | 0.00 | 0.00 | 0.02 | 0.02 | 0.08 | 0.00 | 0.00 | 0.00 | 0.03 | 0.01 | 0.00 | 0.02 | 0.03 | 0.12 | 0.00 | 0.07 | |
2 | 0.02 | 0.63 | 0.05 | 0.01 | 0.00 | 0.01 | 0.02 | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.05 | 0.02 | 0.07 | 0.05 | |
3 | 0.00 | 0.02 | 0.84 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 0.02 | 0.03 | 0.02 | |
4 | 0.00 | 0.04 | 0.17 | 0.55 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.03 | 0.03 | 0.01 | 0.01 | 0.03 | 0.04 | 0.01 | 0.02 | 0.01 | |
5 | 0.01 | 0.00 | 0.03 | 0.04 | 0.61 | 0.07 | 0.02 | 0.00 | 0.02 | 0.03 | 0.00 | 0.02 | 0.01 | 0.03 | 0.01 | 0.05 | 0.01 | 0.02 | |
6 | 0.00 | 0.03 | 0.03 | 0.02 | 0.00 | 0.63 | 0.05 | 0.03 | 0.01 | 0.07 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.08 | |
7 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.02 | 0.52 | 0.00 | 0.00 | 0.02 | 0.05 | 0.00 | 0.00 | 0.01 | 0.01 | 0.18 | 0.00 | 0.11 | |
8 | 0.01 | 0.05 | 0.03 | 0.07 | 0.05 | 0.03 | 0.03 | 0.33 | 0.07 | 0.04 | 0.01 | 0.03 | 0.05 | 0.00 | 0.04 | 0.01 | 0.08 | 0.05 | |
9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.01 | 0.00 | 0.04 | 0.64 | 0.02 | 0.00 | 0.05 | 0.03 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | |
10 | 0.02 | 0.02 | 0.05 | 0.01 | 0.03 | 0.07 | 0.01 | 0.03 | 0.11 | 0.38 | 0.00 | 0.05 | 0.03 | 0.08 | 0.02 | 0.04 | 0.01 | 0.02 | |
11 | 0.05 | 0.11 | 0.02 | 0.01 | 0.01 | 0.01 | 0.04 | 0.00 | 0.00 | 0.01 | 0.45 | 0.00 | 0.00 | 0.00 | 0.10 | 0.03 | 0.08 | 0.08 | |
12 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.87 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | |
13 | 0.00 | 0.02 | 0.07 | 0.00 | 0.03 | 0.01 | 0.00 | 0.00 | 0.03 | 0.05 | 0.00 | 0.07 | 0.64 | 0.03 | 0.00 | 0.01 | 0.03 | 0.00 | |
14 | 0.02 | 0.01 | 0.02 | 0.01 | 0.13 | 0.01 | 0.00 | 0.02 | 0.07 | 0.05 | 0.00 | 0.08 | 0.05 | 0.49 | 0.00 | 0.01 | 0.00 | 0.02 | |
15 | 0.00 | 0.08 | 0.00 | 0.01 | 0.00 | 0.01 | 0.02 | 0.01 | 0.00 | 0.03 | 0.10 | 0.00 | 0.00 | 0.00 | 0.62 | 0.03 | 0.04 | 0.04 | |
16 | 0.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.05 | 0.02 | 0.01 | 0.00 | 0.00 | 0.03 | 0.01 | 0.00 | 0.00 | 0.10 | 0.65 | 0.01 | 0.04 | |
17 | 0.02 | 0.09 | 0.08 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.02 | 0.00 | 0.05 | 0.01 | 0.61 | 0.02 | |
18 | 0.08 | 0.07 | 0.01 | 0.01 | 0.02 | 0.10 | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.00 | 0.01 | 0.05 | 0.01 | 0.01 | 0.59 |
The heart sound biometric | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
1 | 0.52 | 0.08 | 0.00 | 0.00 | 0.02 | 0.02 | 0.08 | 0.00 | 0.00 | 0.00 | 0.03 | 0.01 | 0.00 | 0.02 | 0.03 | 0.12 | 0.00 | 0.07 | |
2 | 0.02 | 0.63 | 0.05 | 0.01 | 0.00 | 0.01 | 0.02 | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.05 | 0.02 | 0.07 | 0.05 | |
3 | 0.00 | 0.02 | 0.84 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 0.02 | 0.03 | 0.02 | |
4 | 0.00 | 0.04 | 0.17 | 0.55 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.03 | 0.03 | 0.01 | 0.01 | 0.03 | 0.04 | 0.01 | 0.02 | 0.01 | |
5 | 0.01 | 0.00 | 0.03 | 0.04 | 0.61 | 0.07 | 0.02 | 0.00 | 0.02 | 0.03 | 0.00 | 0.02 | 0.01 | 0.03 | 0.01 | 0.05 | 0.01 | 0.02 | |
6 | 0.00 | 0.03 | 0.03 | 0.02 | 0.00 | 0.63 | 0.05 | 0.03 | 0.01 | 0.07 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.08 | |
7 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.02 | 0.52 | 0.00 | 0.00 | 0.02 | 0.05 | 0.00 | 0.00 | 0.01 | 0.01 | 0.18 | 0.00 | 0.11 | |
8 | 0.01 | 0.05 | 0.03 | 0.07 | 0.05 | 0.03 | 0.03 | 0.33 | 0.07 | 0.04 | 0.01 | 0.03 | 0.05 | 0.00 | 0.04 | 0.01 | 0.08 | 0.05 | |
9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.01 | 0.00 | 0.04 | 0.64 | 0.02 | 0.00 | 0.05 | 0.03 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | |
10 | 0.02 | 0.02 | 0.05 | 0.01 | 0.03 | 0.07 | 0.01 | 0.03 | 0.11 | 0.38 | 0.00 | 0.05 | 0.03 | 0.08 | 0.02 | 0.04 | 0.01 | 0.02 | |
11 | 0.05 | 0.11 | 0.02 | 0.01 | 0.01 | 0.01 | 0.04 | 0.00 | 0.00 | 0.01 | 0.45 | 0.00 | 0.00 | 0.00 | 0.10 | 0.03 | 0.08 | 0.08 | |
12 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.87 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | |
13 | 0.00 | 0.02 | 0.07 | 0.00 | 0.03 | 0.01 | 0.00 | 0.00 | 0.03 | 0.05 | 0.00 | 0.07 | 0.64 | 0.03 | 0.00 | 0.01 | 0.03 | 0.00 | |
14 | 0.02 | 0.01 | 0.02 | 0.01 | 0.13 | 0.01 | 0.00 | 0.02 | 0.07 | 0.05 | 0.00 | 0.08 | 0.05 | 0.49 | 0.00 | 0.01 | 0.00 | 0.02 | |
15 | 0.00 | 0.08 | 0.00 | 0.01 | 0.00 | 0.01 | 0.02 | 0.01 | 0.00 | 0.03 | 0.10 | 0.00 | 0.00 | 0.00 | 0.62 | 0.03 | 0.04 | 0.04 | |
16 | 0.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.05 | 0.02 | 0.01 | 0.00 | 0.00 | 0.03 | 0.01 | 0.00 | 0.00 | 0.10 | 0.65 | 0.01 | 0.04 | |
17 | 0.02 | 0.09 | 0.08 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.02 | 0.00 | 0.05 | 0.01 | 0.61 | 0.02 | |
18 | 0.08 | 0.07 | 0.01 | 0.01 | 0.02 | 0.10 | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.00 | 0.01 | 0.05 | 0.01 | 0.01 | 0.59 | |
The gait biometric | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
1 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
2 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | |
3 | 0.00 | 0.00 | 0.97 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
4 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
5 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
6 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.88 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.89 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | |
9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
10 | 0.00 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.95 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | |
12 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
13 | 0.00 | 0.00 | 0.00 | 0.01 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.86 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.00 | 0.00 | |
15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | |
16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | |
17 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.98 | 0.00 | |
18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | |
The combined biometrics | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
1 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
2 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | |
3 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
4 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
5 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
6 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | |
7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.91 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | |
9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.93 | 0.01 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | |
10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.97 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | |
12 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 | |
15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 | |
16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.99 | 0.00 | 0.00 | |
17 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | |
18 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 |
Name | Biometric Identifier | Deep Model | No. of Participants | Accuracy |
---|---|---|---|---|
This work | Heart sound | GoogLeNet | 18 | 58.7% |
Gait | 96.2% | |||
Gait + Heart sound | 98.0% | |||
[2] | Heart µDoppler | CNN | 10 | 80% |
[4] | Gait | CNN | 15 | 95.20% |
[15] | Gait | LSTM-RNN | 29 | 89.10% |
[16] | Gait | TCN | 10–100 | 97–89% |
[17] | Gait | CNN | 20 | 96.70% |
[29] | Gait | TCN | 5 | 94.90% |
[30] | Gait | RAN-CNN | 6 | 96.20% |
[31] | Gait | ResNet-50 | 22 | 84% |
[32] | Gait | CNN | 29 | 86.9%, |
[33] | Gait | AlexNet | 4–20 | 97–69% |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 |
2 | 0 | 0.4 | 0.2 | 0 | 0 | 0.1 | 0.2 | 0.1 |
3 | 0 | 0 | 0.9 | 0 | 0 | 0 | 0.1 | 0 |
4 | 0 | 0 | 0 | 0.9 | 0 | 0 | 0 | 0.1 |
5 | 0 | 0.2 | 0 | 0.1 | 0.4 | 0 | 0.3 | 0 |
6 | 0 | 0.1 | 0 | 0 | 0 | 0.9 | 0 | 0 |
7 | 0 | 0 | 0.2 | 0.1 | 0 | 0 | 0.7 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkasimi, A.; Shepard, T.; Wagner, S.; Pancrazio, S.; Pham, A.-V.; Gardner, C.; Funsten, B. Dual-Biometric Human Identification Using Radar Deep Transfer Learning. Sensors 2022, 22, 5782. https://doi.org/10.3390/s22155782
Alkasimi A, Shepard T, Wagner S, Pancrazio S, Pham A-V, Gardner C, Funsten B. Dual-Biometric Human Identification Using Radar Deep Transfer Learning. Sensors. 2022; 22(15):5782. https://doi.org/10.3390/s22155782
Chicago/Turabian StyleAlkasimi, Ahmad, Tyler Shepard, Samuel Wagner, Stephen Pancrazio, Anh-Vu Pham, Christopher Gardner, and Brad Funsten. 2022. "Dual-Biometric Human Identification Using Radar Deep Transfer Learning" Sensors 22, no. 15: 5782. https://doi.org/10.3390/s22155782
APA StyleAlkasimi, A., Shepard, T., Wagner, S., Pancrazio, S., Pham, A. -V., Gardner, C., & Funsten, B. (2022). Dual-Biometric Human Identification Using Radar Deep Transfer Learning. Sensors, 22(15), 5782. https://doi.org/10.3390/s22155782