Development of a Low-Power IoMT Portable Pillbox for Medication Adherence Improvement and Remote Treatment Adjustment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Architecture of the Proposed IoMT Platform
2.2. Patient Interaction Space
2.2.1. 3D Printed Folding Enclosure and Electronic Components
2.2.2. Pillbox Operation
2.2.3. Food-Drug and Supplement-Drug Interaction
2.3. Medication Services Space
2.3.1. Medication Schedule Insert
2.3.2. Pillbox Schedule Receive
2.3.3. Interaction Detection with Pillbox Camera
2.4. Evaluation Study
2.4.1. Power Consumption
2.4.2. Medication Adherence and User Acceptability
3. Results
3.1. Power Consumption Measurements
3.2. Medication Adherence and User Acceptability Results
3.2.1. System Usability Scale
3.2.2. Additional Likert and Open-Ended Questions
3.2.3. Medication Adherence Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, M.T.; Bussell, J.K. Medication adherence: WHO cares? Mayo Clin. Proc. 2011, 86, 304–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roebuck, M.C.; Liberman, J.N.; Gemmill-Toyama, M.; Brennan, T.A. Medication adherence leads to lower health care use and costs despite increased drug spending. Health Aff. (Millwood) 2011, 30, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, P.M.; Magid, D.J.; Shetterly, S.M.; Olson, K.L.; Maddox, T.M.; Peterson, P.N.; Masoudi, F.A.; Rumsfeld, J.S. Medication nonadherence is associated with a broad range of adverse outcomes in patients with coronary artery disease. Am. Heart J. 2008, 155, 772–779. [Google Scholar] [CrossRef]
- Senst, B.L.; Achusim, L.E.; Genest, R.P.; Cosentino, L.A.; Ford, C.C.; Little, J.A.; Raybon, S.J.; Bates, D.W. Practical approach to determining costs and frequency of adverse drug events in a health care network. Am. J. Health Pharm. 2001, 58, 1126–1132. [Google Scholar] [CrossRef]
- Aldeer, M.; Javanmard, M.; Martin, R.P. A Review of Medication Adherence Monitoring Technologies. Appl. Syst. Innov. 2018, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Hayes, T.L.; Hunt, J.M.; Adami, A.; Kaye, J.A. An Electronic Pillbox for Continuous Monitoring of Medication Adherence. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 6400–6403. [Google Scholar]
- Siu, H.Y.-H.; Mangin, D.; Howard, M.; Price, D.; Chan, D. Developing and testing an electronic medication administration monitoring device for community dwelling seniors: A feasibility study. Pilot Feasibility Stud. 2017, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Peplinski, S.J.; Nia, S.M.; Farajidavar, A. An interoperable pillbox system for smart medication adherence. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, Chicago, IL, USA, 26–30 August 2014; pp. 1386–1389. [Google Scholar]
- Parra, J.M.; Valdez, W.; Guevara, A.; Cedillo, P.; Ortíz-Segarra, J. Intelligent pillbox: Automatic and programmable Assistive Technology device. In Proceedings of the 2017 13th IASTED International Conference on Biomedical Engineering (BioMed), Innsbruck, Austria, 20–21 February 2017; pp. 74–81. [Google Scholar]
- Abbey, B.; Alipour, A.; Gilmour, L.; Camp, C.; Hofer, C.; Lederer, R.; Rasmussen, G.; Liu, L.; Nikolaidis, I.; Stroulia, E.; et al. A remotely programmable smart pillbox for enhancing medication adherence. In Proceedings of the 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS), Rome, Italy, 20–22 June 2012; pp. 1–4. [Google Scholar]
- Tsai, H.-L.; Tseng, C.H.; Wang, L.-C.; Juang, F.-S. Bidirectional smart pill box monitored through internet and receiving reminding message from remote relatives. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Taipei, Taiwan, 12–14 June 2017; pp. 393–394. [Google Scholar]
- Aditya Manikanta, A.; Sahu, H.; Arora, K.; Koneru, S.V. An IoT Approach Toward Storage of Medicines to Develop a Smart Pill Box. In International Conference on Artificial Intelligence and Sustainable Engineering; Sanyal, G., Travieso-González, C.M., Awasthi, S., Pinto, C.M.A., Purushothama, B.R., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 547–559. [Google Scholar]
- Yang, G.; Xie, L.; Mäntysalo, M.; Zhou, X.; Pang, Z.; Xu, L.D.; Kao-Walter, S.; Chen, Q.; Zheng, L.-R. A Health-IoT Platform Based on the Integration of Intelligent Packaging, Unobtrusive Bio-Sensor, and Intelligent Medicine Box. IEEE Trans. Ind. Inform. 2014, 10, 2180–2191. [Google Scholar] [CrossRef] [Green Version]
- Ramasamy, L.K.; Khan, F.; Shah, M.; Prasad, B.V.V.S.; Iwendi, C.; Biamba, C. Secure Smart Wearable Computing through Artificial Intelligence-Enabled Internet of Things and Cyber-Physical Systems for Health Monitoring. Sensors 2022, 22, 1076. [Google Scholar] [CrossRef]
- Hero Medication Dispenser, Manager, & Pill Organizer|Hero. Available online: https://herohealth.com/ (accessed on 1 September 2020).
- Automatic Pill Dispenser|Smart Medicine Organizer and App|Pria|Pria. Available online: https://www.okpria.com/ (accessed on 30 June 2022).
- Guo, J.J.; Wu, J.; Kelton, C.M.L.; Jing, Y.; Fan, H.; Keck, P.E.; Patel, N.C. Exposure to potentially dangerous drug-drug interactions involving antipsychotics. Psychiatr. Serv. 2012, 63, 1080–1088. [Google Scholar] [CrossRef]
- Schmidt, L.E.; Dalhoff, K. Food-Drug Interactions. Drugs 2002, 62, 1481–1502. [Google Scholar] [CrossRef]
- Bushra, R.; Aslam, N.; Khan, A.Y. Food-drug interactions. Oman Med. J. 2011, 26, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Yetley, E.A. Multivitamin and multimineral dietary supplements: Definitions, characterization, bioavailability, and drug interactions. Am. J. Clin. Nutr. 2007, 85, 269S–276S. [Google Scholar] [CrossRef] [Green Version]
- Alshurafa, N.; Eastwood, J.-A.; Nyamathi, S.; Liu, J.J.; Xu, W.; Ghasemzadeh, H.; Pourhomayoun, M.; Sarrafzadeh, M. Improving compliance in remote healthcare systems through smartphone battery optimization. IEEE J. Biomed. Health Inform. 2015, 19, 57–63. [Google Scholar] [CrossRef] [PubMed]
- How It Works-PillPack. Available online: https://www.pillpack.com/how-it-works (accessed on 23 February 2022).
- Zaidi, S.S.A.; Ansari, M.S.; Aslam, A.; Kanwal, N.; Asghar, M.; Lee, B. A survey of modern deep learning based object detection models. Digit. Signal Process. 2022, 126, 103514. [Google Scholar] [CrossRef]
- Dhanamjayulu, C.; Nizhal, U.N.; Maddikunta, P.K.R.; Gadekallu, T.R.; Iwendi, C.; Wei, C.; Xin, Q. Identification of malnutrition and prediction of BMI from facial images using real-time image processing and machine learning. IET Image Process. 2022, 16, 647–658. [Google Scholar]
- Karagiannis, D.; Nikita, K.S. Design and development of a 3D Printed IoT portable Pillbox for continuous medication adherence. In Proceedings of the 2020 IEEE International Conference on Smart Internet of Things (SmartIoT), Beijing, China, 14–16 August 2020; pp. 352–353. [Google Scholar]
- Hatzivasilis, G.; Soultatos, O.; Ioannidis, S.; Verikoukis, C.; Demetriou, G.; Tsatsoulis, C. Review of Security and Privacy for the Internet of Medical Things (IoMT). In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini, Greece, 29–31 May 2019; pp. 457–464. [Google Scholar]
- Terms of Service. Available online: https://lhncbc.nlm.nih.gov/RxNav/TermsofService.html (accessed on 19 July 2022).
- Nelson, S.J.; Zeng, K.; Kilbourne, J.; Powell, T.; Moore, R. Normalized names for clinical drugs: RxNorm at 6 years. J. Am. Med. Inform. Assoc. 2011, 18, 441–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phansalkar, S.; Desai, A.A.; Bell, D.; Yoshida, E.; Doole, J.; Czochanski, M.; Middleton, B.; Bates, D.W. High-priority drug-drug interactions for use in electronic health records. J. Am. Med. Inform. Assoc. 2012, 19, 735–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006, 34, D668–D672. [Google Scholar] [CrossRef]
- Vision AI|Derive Image Insights via ML|Cloud Vision API. Available online: https://cloud.google.com/vision (accessed on 31 August 2020).
- Mulfari, D.; Celesti, A.; Fazio, M.; Villari, M.; Puliafito, A. Using Google Cloud Vision in assistive technology scenarios. In Proceedings of the 2016 IEEE Symposium on Computers and Communication (ISCC), Messina, Italy, 27–30 June 2016; pp. 214–219. [Google Scholar]
- Jia, J.; Yu, J.; Hanumesh, R.S.; Xia, S.; Wei, P.; Choi, H.; Jiang, X. Intelligent and privacy-preserving medication adherence system. Smart Health 2018, 9–10, 250–264. [Google Scholar] [CrossRef]
- YIN, Y.; Zeng, Y.; Chen, X.; Fan, Y. The internet of things in healthcare: An overview. J. Ind. Inf. Integr. 2016, 1, 3–13. [Google Scholar] [CrossRef]
- Detect Labels|Cloud Vision API|Google Cloud. Available online: https://cloud.google.com/vision/docs/labels (accessed on 1 July 2022).
- Detect Text in Images|Cloud Vision API|Google Cloud. Available online: https://cloud.google.com/vision/docs/ocr (accessed on 1 July 2022).
- Neuvonen, P.J.; Kivistö, K.T.; Lehto, P. Interference of dairy products with the absorption of ciprofloxacin. Clin. Pharmacol. Ther. 1991, 50, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, S. Clinical toleration and safety of azithromycin. Am. J. Med. 1991, 91, S40–S45. [Google Scholar] [CrossRef]
- How and When to Take Azithromycin-NHS. Available online: https://www.nhs.uk/medicines/azithromycin/how-and-when-to-take-azithromycin/ (accessed on 5 February 2022).
- Williams, P.E.O.; Harding, S.M. The absolute bioavailability of oral cefuroxime axetil in male and female volunteers after fasting and after food. J. Antimicrob. Chemother. 1984, 13, 191–196. [Google Scholar] [CrossRef]
- Katsanos, C.; Tselios, N.; Xenos, M. Perceived Usability Evaluation of Learning Management Systems: A First Step towards Standardization of the System Usability Scale in Greek. In Proceedings of the 2012 16th Panhellenic Conference on Informatics, Piraeus, Greece, 5–7 October 2012; pp. 302–307. [Google Scholar]
- Brooke, J. SUS: A Quick and Dirty Usability Scale. 1996. Available online: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.232.5526 (accessed on 1 July 2022).
- How to Measure Product Usability with the System Usability Scale (SUS) Score|by Hadi Alathas|UX Planet. Available online: https://uxplanet.org/how-to-measure-product-usability-with-the-system-usability-scale-sus-score-69f3875b858f (accessed on 7 February 2022).
- System Usability Scale (SUS)|Usability.gov. Available online: https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html (accessed on 7 February 2022).
- Sasmito, G.W.; Zulfiqar, L.O.M.; Nishom, M. Usability Testing based on System Usability Scale and Net Promoter Score. In Proceedings of the 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 5–6 December 2019; pp. 540–545. [Google Scholar]
- Finstad, K. The System Usability Scale and Non-Native English Speakers. JUS 2006, 1, 185–188. [Google Scholar]
- Battery Life Calculator|DigiKey Electronics. Available online: https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-battery-life (accessed on 31 March 2021).
- Shabbir, A.; Shabbir, M.; Javed, A.R.; Rizwan, M.; Iwendi, C.; Chakraborty, C. Exploratory data analysis, classification, comparative analysis, case severity detection, and internet of things in COVID-19 telemonitoring for smart hospitals. J. Exp. Theor. Artif. Intell. 2022, 1–28. [Google Scholar] [CrossRef]
Medication Adjustments Used in the Study | Pharmacological Equivalent Scenario | Example |
---|---|---|
Remove medicine from the intake schedule | Biomarkers indicate danger with the usual medication intake schedule | Low blood sugar suggests skipping of the diabetes medication |
Change of medicine intake time | Interaction between food and drug | Ciprofloxacin and yogurt simultaneous intake should be avoided [37] |
Add medicine: (a) Add extra medicine | Appearance of transient symptoms | An injury may require painkiller temporarily |
(b) Double scheduled medicine dose | Biomarkers indicate the need for higher dose than usual | Blood pressure measurements suggest the duplication of the dose |
Switch two medicines | Some food-drug interactions should be avoided, while others can be beneficial | Food-Azithromycin capsules interaction should be avoided [38,39], while Food-Cefuroxime Axetil is recommended [40] |
Total Errors | Sum of Delays (Minutes) | ||||
---|---|---|---|---|---|
Dummy Pillbox | IoMT Pillbox | Dummy Pillbox (including >30 min delays) | Dummy Pillbox | IoMT Pillbox | |
Average | 1.14 | 1.43 | 76.86 | 25.14 | 10.29 |
SD | 1.70 | 1.28 | 95.34 | 23.29 | 8.87 |
p = 0.57 | p = 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karagiannis, D.; Mitsis, K.; Nikita, K.S. Development of a Low-Power IoMT Portable Pillbox for Medication Adherence Improvement and Remote Treatment Adjustment. Sensors 2022, 22, 5818. https://doi.org/10.3390/s22155818
Karagiannis D, Mitsis K, Nikita KS. Development of a Low-Power IoMT Portable Pillbox for Medication Adherence Improvement and Remote Treatment Adjustment. Sensors. 2022; 22(15):5818. https://doi.org/10.3390/s22155818
Chicago/Turabian StyleKaragiannis, Dimitrios, Konstantinos Mitsis, and Konstantina S. Nikita. 2022. "Development of a Low-Power IoMT Portable Pillbox for Medication Adherence Improvement and Remote Treatment Adjustment" Sensors 22, no. 15: 5818. https://doi.org/10.3390/s22155818
APA StyleKaragiannis, D., Mitsis, K., & Nikita, K. S. (2022). Development of a Low-Power IoMT Portable Pillbox for Medication Adherence Improvement and Remote Treatment Adjustment. Sensors, 22(15), 5818. https://doi.org/10.3390/s22155818