Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation
Abstract
:1. Introduction
2. Principle, Demonstration, and Design Optimization of the VI Probe
2.1. Principle of a Floating Toroidal Coil as a Voltage and Current Sensor
2.2. Simulation Demonstration
2.3. Design Optimization through Simulation
3. Experiment Results and Discussion
3.1. Fabrication
3.2. Calibration
3.3. Comparison with a Commercial VI Probe
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing, 2nd ed.; Wiley&Sons. Inc.: Hobken, NJ, USA, 2005; pp. 1–22. [Google Scholar]
- Adamovich, I.; Baalrud, S.D.; Bogaerts, A.; Bruggeman, P.J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P.; et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D Appl. Phys. 2017, 50, 323001. [Google Scholar] [CrossRef]
- Bogaerts, A.; Tu, X.; Whitehead, J.C.; Centi, G.; Lefferts, L.; Guaitella, O.; Azzolina-Jury, F.; Kim, H.-H.; Murphy, A.B.; Schneider, W.F. The 2020 plasma catalysis roadmap. J. Phys. D Appl. Phys. 2020, 53, 443001. [Google Scholar] [CrossRef]
- Ishikawa, K.; Karahashi, K.; Ishijima, T.; Cho, S.I.I.; Elliott, S.; Hausmann, D.; Mocuta, D.; Wilson, A.; Kinoshita, K. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom? Jpn. J. Appl. Phys. 2018, 57, 06JA01. [Google Scholar] [CrossRef]
- Vincent, M. Donnelly and Avinoam Kornblit, Plasma etching: Yesterday, today, and tomorrow. J. Vac. Sci. Technol. 2013, 31, 050825. [Google Scholar]
- Seong, I.; Lee, J.; Cho, C.; Lee, Y.; Kim, S.; You, S. Characterization of SiO2 Over Poly-Si Mask Etching in Ar/C4F8 Capacitively Coupled Plasma. Appl. Sci. Converg. Technol. 2021, 30, 176–182. [Google Scholar] [CrossRef]
- Lee, Y.; Seong, I.; Lee, J.; Lee, S.; Cho, C.; Kim, S.; You, S. Various evolution trends of sample thickness in fluorocarbon film deposition on SiO2. J. Vac. Sci. Technol. A 2022, 40, 013001. [Google Scholar] [CrossRef]
- Lee, H.; Chung, C. Electron heating and control of electron energy distribution for the enhancement of the plasma ashing processing. Plasma Sources Sci. Technol. 2015, 24, 024001. [Google Scholar] [CrossRef]
- Susa, Y.; Ohtake, H.; Jianping, Z.; Chen, L.; Nozawa, T. Characterization of CO2 plasma ashing for less low-dielectric-constant film damage. J. Vac. Sci. Technol. A 2015, 33, 061307. [Google Scholar] [CrossRef]
- Hamedani, Y.; Macha, P.; Bunning, T.J.; Naik, R.R.; Vasudev, M.C. Plasma-Enhanced Chemical Vapor Deposition: Where we are and the Outlook for the Future. In Chemical Vapor Deposition, Recent Advances and Applications in Optical, Solar Cells and Solid State Devices; Neralla, S., Ed.; IntechOpen: London, UK, 2016; pp. 247–251. [Google Scholar]
- Vasudev, M.C.; Anderson, K.D.; Bunning, T.J.; Tsukruk, V.V.; Naik, R.R. Exploration of Plasma-Enhanced Chemical Vapor Deposition as a Method for Thin-Film Fabrication with Biological Applications. ASC Appl. Mater. Interfaces 2013, 5, 3983–3994. [Google Scholar] [CrossRef]
- Chung, Y.; Lung, C.; Chiu, Y.; Lee, H.; Lian, N.; Yang, T.; Chen, K.; Lu, C. Study of Plasma Arcing Mechanism in High Aspect Ratio Slit Trench Etching. In Proceedings of the 2019 30th Annual SEMI Advanced Semiconductor MAnufacturing Conference (ASMC), Saratoga Springs, NY, USA, 6–9 May 2019. [Google Scholar]
- Carter, D.; Walde, H.; Nauman, K. Managing arcs in large area sputtering applications. Thin Solid Films 2012, 520, 4199–4202. [Google Scholar] [CrossRef]
- Lee, H.J.; Seo, D.S.; May, G.S.; Hong, S.J. Use of In-Situ Optical Emission Spectroscopy for Leak Fault Detection and Classification in Plasma Etching. J. Semicond. Technol. Sci. 2013, 13, 4. [Google Scholar] [CrossRef] [Green Version]
- Marchack, N.; Buzi, L.; Farmer, D.B.; Miyazoe, H.; Papalia, J.M.; Yan, H.; Totir, G.; Engelmann, S.U. Plasma processing for advanced microelectronics beyond CMOS. J. Appl. Phys. 2021, 130, 080901. [Google Scholar] [CrossRef]
- Seman, M.; Wolden, C.A. Investigation of the role of plasma conditions on the deposition rate and electrochromic performance of tungsten oxide thin films. J. Vac. Sci. Technol. A 2003, 21, 6. [Google Scholar] [CrossRef]
- Gopikishan, S.; Banerjee, I.; Bogle, K.A.; Das, A.K.; Pathak, A.P.; Mahapatra, S.K. Paschen curve approach to investigate electron density and deposition rate of Cu in magnetron sputtering system. Radiat. Eff. Deffects Solids 2016, 171, 999–1005. [Google Scholar] [CrossRef]
- Cho, C.; You, K.; Kim, S.; Lee, Y.; Lee, J.; You, S. Characterization of SiO2 Etching Profiles in Pulse-Modulated Capacitively Coupled Plasmas. Materials 2021, 14, 5036. [Google Scholar] [CrossRef]
- Hopkins, M.B.; Lawler, J.F. Plasma diagnostics in industry. Plasma Phys. Control. Fusion 2000, 42, B189–B197. [Google Scholar] [CrossRef]
- Baek, K.H.; Jung, Y.; Min, G.J.; Kang, C.; Cho, H.K.; Moon, J.T. Chamber maintenance and fault detection technique for a gate etch process via self-excited electron resonance spectroscopy. J. Vac. Sci. Technol. B 2005, 23, 125–129. [Google Scholar] [CrossRef]
- Lobbia, R.B.; Beal, B.E. Recommended Practice for Use of Langmuir Probes in Electric Propulsion Testing. J. Propuls. Power 2017, 33, 3. [Google Scholar] [CrossRef]
- Chen, F.F. Lecture Notes on Langmuir Probe Diagnostics. In Proceedings of the 30th International Conference on Plasma Science, Jeju, Korea, 2–5 June 2003. [Google Scholar]
- Godyak, V. RF discharge diagnostics: Some problems and their resolution. J. Appl. Phys. 2021, 129, 041101. [Google Scholar] [CrossRef]
- Sugai, H.; Nakamura, K. Recent innovations in microwave probes for reactive plasma diagnostics. Jpn. J. Appl. Phys. 2019, 58, 060101. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, J.J.; Kim, D.W.; Kim, J.H.; You, S.J. A transmission line model of the cutoff probe. Plasma Sources Sci. Technol. 2019, 28, 055014. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Lee, Y.; Cho, C.; You, S. Crossing Frequency Method Applicable to Intermediate Pressure Plasma Diagnostics Using the Cutoff Probe. Sensors 2022, 22, 1291. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, J.J.; Lee, Y.S.; Kim, D.W.; You, S.J. Finding the optimum design of the planar cutoff probe through a computational study. AIP Adv. 2021, 11, 025241. [Google Scholar] [CrossRef]
- Piejak, R.B.; Godyak, V.A.; Garner, R.; Alexandrovich, B.M.; Sternber, N. The hairpin resonator: A plasma density measuring technique revisited. J. Appl. Phys. 2004, 95, 7. [Google Scholar] [CrossRef]
- Dine, S.; Booth, J.-P.; Curley, G.A.; Corr, C.S.; Jolly, J.; Guillon, J. A novel technique for plasma density measurement using surface-wave transmission spectra. Plasma Sources Sci. Technol. 2005, 14, 777–786. [Google Scholar] [CrossRef]
- Styrnoll, T.; Harhausen, J.; Lapke, M.; Storch, R.; Brinkmann, R.P.; Foest, R. A Ohl and P Awakowicz, Process diagnostics and monitoring using the multipole resonance probe in an inhomogeneous plasma for ion-assisted deposition of optical coatings. Plasma Sources Sci. Technol. 2013, 22, 045008. [Google Scholar] [CrossRef]
- Wang, C.; Friedrichs, M.; Oberrath, J.; Brinkmann, R.P. Kinetic investigation of the planar multipole resonance probe in the low-pressure plasma. Plasma Sources Sci. Technol. 2021, 30, 105011. [Google Scholar] [CrossRef]
- Ogawa, D.; Nakamura, K.; Sugai, H. Experimental validity of double-curling probe method in film-depositing plasma. Plasma Sources Sci. Technol. 2021, 30, 085009. [Google Scholar] [CrossRef]
- Mackus, A.J.M.; Heil, S.B.S.; Langereis, E.; Knoops, H.C.M.; Sanden, M.C.M.V.; Kessels, W.M.M. Optical emission spectroscopy as a tool for studying, optimizing, and monitoring plasma-assisted atomic layer deposition processes. J. Vac. Sci. Technol. A 2010, 28, 77. [Google Scholar] [CrossRef] [Green Version]
- Engeln, R.; Klarenaar, B.; Guaitella, O. Foundations of optical diagnostics in low-temperature plasmas. Plasma Sources Sci. Technol. 2020, 29, 063001. [Google Scholar] [CrossRef]
- Sobolewski, M.A. Electrical characterization of radio-frequency discharges in the Gaseous Electronics Conference Reference Cell. J. Vac. Sci. Technol. A 1992, 10, 3550–3562. [Google Scholar] [CrossRef]
- Dewan, N.A. Analysis and Modelling of the Impact of Plasma RF Harmonics in Semiconductor Plasma Processing. Ph.D. Thesis, Dublin City University, Dublin, Ireland, 2001. [Google Scholar]
- Sezemsky, P.; Stranak, V.; Kratochvil, J.; Cada, M.; Hippler, R.; Hrabovsky, M.; Hubicka, Z. Modified high frequency probe approach for diagnostics of highly reactive plasma. Plasma Sources Sci. Technol. 2019, 28, 115009. [Google Scholar] [CrossRef]
- Lee, M.; Jang, S.; Chung, C. Floating probe for electron temperature and ion density measurement applicable to processing plasmas. J. Appl. Phys. 2007, 101, 033305. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Kwon, D.; Chung, C. A method for measuring negative ion density distribution using harmonic currents in a low-pressure oxygen plasma. Plasma Sources Sci. Technol. 2020, 29, 065017. [Google Scholar] [CrossRef]
- Yang, R.; Chen, R. Real-Time Plasma Process Condition Sensing and Abnormal Process Detection. Sensors 2010, 10, 5703–5723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.; Chen, R. Real-Time Fault Classification for Plasma Processes. Sensors 2011, 11, 7037–7054. [Google Scholar] [CrossRef]
- Yang, J.; McArdle, C.; Daniels, S. Dimension Reduction of Multivariable Optical Emission Spectrometer Datasets for Industrial Plasma Processes. Sensors 2014, 14, 52–67. [Google Scholar] [CrossRef] [Green Version]
- Motomura, T.; Kasashima, Y.; Uesugi, F.; Kurita, H.; Kimura, N.A. Real-time characteristic impedance monitoring for end-point and anomaly detection in the plasma etching process. Jpn. J. Appl. Phys. 2014, 53, 03DC03. [Google Scholar] [CrossRef]
- Kang, G.; An, S.; Kim, K.; Hong, S. An in situ monitoring method for PECVD process equipment condition. Plasma Sci. Technol. 2019, 21, 064003. [Google Scholar] [CrossRef]
- Kim, J.; Lee, K.; Jeong, H.; Lee, J.; Choi, Y.S. Anti-contamination SMART (Spectrum Monitoring Apparatus with Roll-to-roll Transparent film) window for optical diagnostics of plasma systems. Rev. Sci. Instrum. 2021, 92, 013507. [Google Scholar] [CrossRef]
- Kim, N. Self-Plasma Optical Emission Spectroscopy Having Active Contamination Preventing Equipment and Method of Preventing Contaminaion of Plasma Chamber. KR 101273922B1, 11 June 2013. [Google Scholar]
- Cha, D. Window Contaminating Delay Apparatus for Semiconductor Process. KR 101410296B1, 20 June 2014. [Google Scholar]
- Huang, X.; Xin, Y.; Yang, L.; Ye, C.; Yuan, Q.; Ning, Z. Analysis of optical emission spectroscopy in a dual-frequency capacitively coupled CHF3 plasma. Phys. Plasmas 2009, 16, 043509. [Google Scholar] [CrossRef]
- Nakano, T.; Samukawa, S. Effects of Ar dilution on the optical emission spectra of fluorocarbon ultrahigh-frequency plasmas: C4F8 vs CF4. J. Vac. Sci. Technol. A 1999, 17, 686. [Google Scholar] [CrossRef]
- Lafleur, T.; Delattre, P.A.; Booth, J.P.; Johnson, E.V.; Dine, S. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads. Rev. Sci. Instrum. 2013, 84, 015001. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, J. Sensor for measuring electrical characteristics. KR 10-2011-0024791, 29 December 2011. [Google Scholar]
- Kim, K.K.; Lee, J.J.; Kim, S.J.; Cho, C.H.; Yoo, S.W.; You, S.J. Development of High-precision RF Sensor. Appl. Sci. Converg. Technol. 2019, 28, 88–92. [Google Scholar] [CrossRef]
- CST Studio Suite. Available online: https://www.3ds.com/ (accessed on 16 November 2018).
Coaxial cable | Outer diameter of core | 6 mm |
Conductance of core | infinity (PEC) | |
Outer diameter of dielectric | 9 mm | |
Relative dielectric constant of dielectric | 2.1 | |
Outer diameter of shield | 19 mm | |
Conductance of shield | infinity (PEC) | |
Length | 10 mm | |
Rod | Diameter | 6 mm |
Length | 80 mm | |
Conductance | infinity (PEC) | |
Floating toroidal coil | Inner diameter | 30 mm |
Outer diameter | 60 mm | |
Width | 20 mm | |
Wire diameter | 2 mm | |
Turns | 9 | |
Conductance | infinity (PEC) | |
Inductive coupling shield (ICS) | Inner diameter | 12 mm |
Outer diameter | 14 mm | |
Hole diameter | 4 mm | |
Length | 80 mm | |
Conductance | infinity (PEC) | |
Capacitive coupling shield (CCS) | Inner diameter | 12 mm |
Outer diameter | 14 mm | |
Length | 73 mm | |
Conductance | infinity (PEC) | |
Rectangular case | Volume | 100 × 100 × 100 mm |
Thickness | 5 mm | |
Conductance | infinity (PEC) |
Coaxial cable | Outer diameter of core | 30 mm |
Conductance of core | infinity (PEC) | |
Outer diameter of dielectric | 45 mm | |
Relative dielectric constant of dielectric | 2.1 | |
Outer diameter of shield | 55 mm | |
Conductance of shield | infinity (PEC) | |
Length | 15 mm | |
Rod | Diameter | 30 mm |
Length | 120 mm | |
Conductance | infinity (PEC) | |
Dielectric holder | Inner diameter | 30 mm |
Outer diameter | 50 | |
Length | 18 mm | |
Relative dielectric constant | 2.1 | |
Floating toroidal coil | Inner diameter | 30 mm |
Outer diameter | 60 mm | |
Width | 20 mm | |
Wire diameter | 2 mm | |
Turns | 9 | |
Conductance | infinity (PEC) | |
Printed circuit board | Board volume | × 110 × 2.60 mm |
Pattern thickness | 0.07 mm | |
Pattern width | 0.2 mm | |
Pattern conductance | × S/m (copper) | |
Rectangular case | Volume | 122 × 86× 15 mm |
Thickness | 2 mm | |
Conductance | infinity (PEC) |
Optimized floating toroidal coil | Inner diameter | 27 mm |
Outer diameter | 32 mm | |
Coil length | 5.0 mm | |
Coil distance | 1.0 mm | |
Turns | 70 | |
Pattern width | 0.2 mm | |
Pattern height | 0.07 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-j.; Seong, I.-h.; Lee, Y.-s.; Cho, C.-h.; Jeong, W.-n.; You, Y.-b.; Lee, J.-j.; You, S.-j. Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation. Sensors 2022, 22, 5871. https://doi.org/10.3390/s22155871
Kim S-j, Seong I-h, Lee Y-s, Cho C-h, Jeong W-n, You Y-b, Lee J-j, You S-j. Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation. Sensors. 2022; 22(15):5871. https://doi.org/10.3390/s22155871
Chicago/Turabian StyleKim, Si-jun, In-ho Seong, Young-seok Lee, Chul-hee Cho, Won-nyoung Jeong, Ye-bin You, Jang-jae Lee, and Shin-jae You. 2022. "Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation" Sensors 22, no. 15: 5871. https://doi.org/10.3390/s22155871
APA StyleKim, S. -j., Seong, I. -h., Lee, Y. -s., Cho, C. -h., Jeong, W. -n., You, Y. -b., Lee, J. -j., & You, S. -j. (2022). Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation. Sensors, 22(15), 5871. https://doi.org/10.3390/s22155871