Anisotropic CdSe Tetrapods in Vortex Flow for Removing Non-Specific Binding and Increasing Protein Capture
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, J.; Li, Y.; Gu, H.; Xia, F.; Zuo, X. Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem. Rev. 2014, 114, 7631–7677. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zong, S.; Wu, L.; Zhu, D.; Cui, Y. SERS-activated platforms for immunoassay: Probes, encoding methods, and applications. Chem. Rev. 2017, 117, 7910–7963. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Walt, D.R. Highly sensitive and multiplexed protein measurements. Chem. Rev. 2019, 119, 293–321. [Google Scholar] [CrossRef]
- Hall, W.P.; Ngatia, S.N.; Van Duyne, R.P. LSPR biosensor signal enhancement using nanoparticle-antibody conjugates. J. Phys. Chem. C 2011, 115, 1410–1414. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dostalek, J.; Knoll, W. Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance. Anal. Chem. 2011, 83, 6202–6207. [Google Scholar] [CrossRef]
- Baek, S.H.; Wark, A.W.; Lee, H.J. Dual nanoparticle amplified surface plasmon resonance detection of thrombin at subattomolar concentrations. Anal. Chem. 2014, 86, 9824–9829. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Song, S.; Kim, S.; Kwon, M.; Lee, H.; Park, W.; Sim, S.J. Single gold-bridged nanoprobes for identification of single point DNA mutations. Nat. Commun. 2019, 10, 836. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Du, Z.; Luo, Q.; Zhao, Y.; Wang, Y.; Wu, K.; Jia, F.; Zhang, Y.; Wang, F. Proteomic strategy for identification of proteins responding to cisplatin-damaged DNA. Anal. Chem. 2019, 91, 6035–6042. [Google Scholar] [CrossRef]
- Sun, J.; Kitova, E.N.; Sun, N.; Klassen, J.S. Method for identifying nonspecific protein-protein interactions in nanoelectrospray ionization mass spectrometry. Anal. Chem. 2007, 79, 8301–8311. [Google Scholar] [CrossRef]
- Bell, G.I. Models for the specific adhesion of cells to cells. Science 1978, 200, 618–627. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, G.; Hein, R.; Liu, N.; Luo, X.; Davis, J.J. Antifouling strategies for selective in vitro and in vivo sensing. Chem. Rev. 2020, 120, 3852–3889. [Google Scholar] [CrossRef] [PubMed]
- Kallsten, M.; Ghorasaini, M.; Hartmann, R.; Bergquist, J.; Kovac, L.; Lind, S.B. Magnetic beads for desalting of monoclonal antibodies and antibody-drug conjugates. Anal. Chem. 2020, 2, 9001–9007. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, D.; Chen, K.; Zhou, P.; Zhao, M.; Zhao, M.; Su, B. Highly efficient desalting by silica isoporous membrane-based microfluidic chip for electrospray ionization mass spectrometry. Anal. Chem. 2018, 90, 14395–14401. [Google Scholar] [CrossRef] [PubMed]
- de Lange, V.; Habegger, M.; Schmidt, M.; Vörös, J. Improving FoRe: A new inlet design for filtering samples through individual microarray spots. ACS Sens. 2017, 2, 339–345. [Google Scholar] [CrossRef]
- Zhang, W.; Ang, W.T.; Xue, C.Y.; Yang, K.L. Minimizing nonspecific protein adsorption in liquid crystal immunoassays by using surfactants. ACS Appl. Mater. Interfaces 2011, 3, 3496–3500. [Google Scholar] [CrossRef]
- Ettelt, V.; Ekat, K.; Kammerer, P.W.; Kreikemeyer, B.; Epple, M.; Veith, M. Streptavidin-coated surfaces suppress bacterial colonization by inhibiting non-specific protein adsorption. J. Biomed. Mater. Res. A 2018, 106, 758–768. [Google Scholar] [CrossRef]
- Soteropulos, C.E.; Zurick, K.M.; Bernards, M.T.; Hunt, H.K. Tailoring the protein adsorption properties of whispering gallery mode optical biosensors. Langmuir 2012, 28, 15743–15750. [Google Scholar] [CrossRef]
- Pilkington, E.H.; Gustafsson, O.J.R.; Xing, Y.; Hernandez-Fernaud, J.; Zampronio, C.; Kakinen, A.; Faridi, A.; Ding, F.; Wilson, P.; Ke, P.C.; et al. Profiling the serum protein corona of fibrillar human islet amyloid polypeptide. ACS Nano 2018, 12, 6066–6078. [Google Scholar] [CrossRef]
- Schlenoff, J.B. Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 2014, 30, 9625–9636. [Google Scholar] [CrossRef]
- Ogi, H.; Fukunishi, Y.; Nagai, H.; Okamato, K.; Hirao, M.; Nishiyama, M. Nonspecific-adsorption behavior of polyethylenglycol and bovine serum albumin studied by 55-MHz wireless-electrodeless quartz crystal microbalance. Biosens. Bioelectron. 2009, 24, 3148–3152. [Google Scholar] [CrossRef]
- Bagwe, R.P.; Hilliard, L.R.; Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22, 4357–4362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rackus, D.G.; Shamsi, M.H.; Wheeler, A.R. Electrochemistry, biosensors and microfluidics: A convergence of fields. Chem. Soc. Rev. 2015, 44, 5320–5340. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, H.; Liu, W.; Wang, Y.; Pang, W.; Duan, X. Biofouling removal and protein detection using a hypersonic resonator. ACS Sens. 2017, 2, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.J.; Ma, Z.; Han, J.; Ai, Y. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Lab Chip 2017, 17, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Vaidyanathan, R.; Shiddiky, M.J.A.; Trau, M. Enabling rapid and specific surface-enhanced Raman scattering immunoassay using nanoscaled surface shear forces. ACS Nano 2015, 9, 6354–6362. [Google Scholar] [CrossRef]
- Jung, I.; Ih, S.; Yoo, H.; Hong, S.; Park, S. Fourier transform surface plasmon resonance of nanodisks embedded in magnetic nanorods. Nano Lett. 2018, 18, 1984–1992. [Google Scholar] [CrossRef]
- Hwang, A.; Kim, E.; Moon, J.; Lee, H.; Lee, M.; Jeong, J.; Lim, E.-K.; Jung, J.; Kang, T.; Kim, B. Atomically flat Au nanoplate platforms enable ultraspecific attomolar detection of protein biomarkers. ACS Appl. Mater. Interfaces 2019, 12, 18960–18967. [Google Scholar] [CrossRef]
- Jana, D.; Matti, C.; He, J.; Sagle, L. Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing. Anal. Chem. 2015, 87, 3964–3972. [Google Scholar] [CrossRef]
- Duan, X.; Li, Y.; Rajan, N.K.; Routenberg, D.A.; Modis, Y.; Reed, M.A. Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat. Nanotechnol. 2012, 7, 401–407. [Google Scholar] [CrossRef]
- Wei, Q.; Song, H.-M.; Leonov, A.P.; Hale, J.A.; Oh, D.; Ong, Q.K.; Ritchie, K.; Wei, A. Gyromagnetic imaging: Dynamic optical contrast using gold nanostars with magnetic cores. J. Am. Chem. Soc. 2009, 131, 9728–9734. [Google Scholar] [CrossRef] [Green Version]
- Strauch, R.C.; Mastarone, D.J.; Sukerkar, P.A.; Song, Y.; Ipsaro, J.J.; Meade, T.J. Reporter protein-targeted probes for magnetic resonance imaging. J. Am. Chem. Soc. 2011, 133, 16346–16349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haun, J.B.; Pepper, L.R.; Boder, E.T.; Hammer, D.A. Using engineered single-chain antibodies to correlate molecular binding properties and nanoparticle adhesion dynamics. Langmuir 2011, 27, 13701–13712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrivas, K.; Kailasa, S.K.; Wu, H.F. Quantum dots laser desorption/ionization MS: Multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS. Proteomics 2009, 9, 2656–2667. [Google Scholar] [CrossRef] [PubMed]
- Shastri, L.A.; Kailasa, S.K.; Wu, H.F. Cysteine-capped ZnSe quantum dots as affinity and accelerating probes for microwave enzymatic digestion of proteins via direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Rapid Commun. Mass Spectrom. 2009, 23, 2247–2252. [Google Scholar] [CrossRef]
- Cho, D.G.; Yoo, H.; Lee, H.; Choi, Y.K.; Lee, M.; Ahn, D.J.; Hong, S. High-speed lateral flow strategy for a fast biosensing with an improved selectivity and binding affinity. Sensors 2018, 18, 1507. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Bae, W.K.; Park, K.U.; Borg, L.Z.; Zentel, R.; Lee, S.; Char, K. Controlled synthesis of CdSe tetrapods with high morphological uniformity by the persistent kinetic growth and the halide-mediated phase transformation. Chem. Mater. 2013, 25, 1443–1449. [Google Scholar] [CrossRef]
- Heo, H.; Lee, M.H.; Yang, J.; Wee, H.S.; Lim, J.; Hahm, D.; Yu, J.W.; Bae, W.K.; Lee, W.B.; Kang, M.S.; et al. Assemblies of colloidal CdSe tetrapod nanocrystals with lengthy arms for flexible thin-film transistors. Nano Lett. 2017, 17, 2433–2439. [Google Scholar] [CrossRef]
- Ma, Z.; Bai, J.; Jiang, X. Monitoring of the enzymatic degradation of protein corona and evaluating the accompanying cytotoxicity of nanoparticles. ACS Appl. Mater Interfaces 2015, 7, 17614. [Google Scholar] [CrossRef]
- Livingstone, J.R. Antibody characterization by isothermal titration calorimetry. Nature 1996, 384, 491–492. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Ahn, D.J. Anisotropic CdSe Tetrapods in Vortex Flow for Removing Non-Specific Binding and Increasing Protein Capture. Sensors 2022, 22, 5929. https://doi.org/10.3390/s22155929
Liu H, Ahn DJ. Anisotropic CdSe Tetrapods in Vortex Flow for Removing Non-Specific Binding and Increasing Protein Capture. Sensors. 2022; 22(15):5929. https://doi.org/10.3390/s22155929
Chicago/Turabian StyleLiu, Hanzhe, and Dong June Ahn. 2022. "Anisotropic CdSe Tetrapods in Vortex Flow for Removing Non-Specific Binding and Increasing Protein Capture" Sensors 22, no. 15: 5929. https://doi.org/10.3390/s22155929
APA StyleLiu, H., & Ahn, D. J. (2022). Anisotropic CdSe Tetrapods in Vortex Flow for Removing Non-Specific Binding and Increasing Protein Capture. Sensors, 22(15), 5929. https://doi.org/10.3390/s22155929