A Scoping Review on Wearable Devices for Environmental Monitoring and Their Application for Health and Wellness
Abstract
:1. Introduction
2. Pollutants
2.1. Particulate Matter
2.2. Nitrogen Dioxide
2.3. Ozone
2.4. Carbon Monoxide
2.5. Sulfur Dioxide
2.6. Volatile Organic Compounds
2.7. Carbon Dioxide
3. Space–Time Resolution in Pollution Monitoring
4. Environmental Sensors
4.1. Gas Sensors
4.1.1. Metal Oxide Semiconductor Sensors
4.1.2. Electrochemical Gas Sensors
4.1.3. Non-Dispersive Infrared Sensors
4.1.4. Photoacoustic Spectroscopy Sensors
4.2. Particulate Matter Sensors
5. Wearable and Portable Commercial Products for Environmental Monitoring
6. Wearables for Air Monitoring in the Scientific Literature
7. Limitations of Wearable Low-Cost Systems
8. Exposure Estimation Adding Activity Recognition
9. Indices to Describe Air Quality
10. Possible Applications
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, Q.; Ji, X.J. The Labor Productivity Consequences of Exposure to Particulate Matters: Evidence from a Chinese National Panel Survey. Int. J. Environ. Res. Public Health 2021, 18, 12859. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Zannetti, P. An introduction to air pollution–definitions, classifications, and history. In Ambient Air Pollution; The Arab School for Science and Technology (ASST) and the Environ Computer Institute: Fremont, CA, USA, 2007; pp. 1–14. [Google Scholar]
- European Environment Agency. Air Pollution Sources. Available online: https://www.eea.europa.eu/themes/air/air-pollution-sources-1 (accessed on 2 June 2022).
- Air Pollution Emissions Overview|Air Quality Planning & Standards|US EPA. Available online: https://www3.epa.gov/airquality/emissns.html (accessed on 2 June 2022).
- Maag, B.; Zhou, Z.; Thiele, L. A survey on sensor calibration in air pollution monitoring deployments. IEEE Internet Things J. 2018, 5, 4857–4870. [Google Scholar] [CrossRef] [Green Version]
- Cecchi, L.; Annesi-Maesano, I.; d’Amato, G. News on climate change, air pollution, and allergic triggers of asthma. J. Investig. Allergol. Clin. Immunol. 2018, 28, 91–97. [Google Scholar]
- Huang, B.; Xiao, T.; Grekousis, G.; Zhao, H.; He, J.; Dong, G.; Liu, Y. Greenness-air pollution-physical activity-hypertension association among middle-aged and older adults: Evidence from urban and rural China. Environ. Res. 2021, 195, 110836. [Google Scholar] [CrossRef]
- Song, H.; Lane, K.J.; Kim, H.; Kim, H.; Byun, G.; Le, M.; Choi, Y.; Park, C.R.; Lee, J.-T. Association between urban greenness and depressive symptoms: Evaluation of greenness using various indicators. Int. J. Environ. Res. Public Health 2019, 16, 173. [Google Scholar] [CrossRef] [Green Version]
- Madureira, J.; Paciência, I.; Rufo, J.; Severo, M.; Ramos, E.; Barros, H.; de Oliveira Fernandes, E. Source apportionment of CO2, PM10 and VOCs levels and health risk assessment in naturally ventilated primary schools in Porto, Portugal. Build. Environ. 2016, 96, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Faustini, A.; Rapp, R.; Forastiere, F. Nitrogen dioxide and mortality: Review and meta-analysis of long-term studies. Eur. Respir. J. 2014, 44, 744–753. [Google Scholar] [CrossRef] [Green Version]
- Arano, K.A.G.; Sun, S.; Ordieres-Mere, J.; Gong, B. The use of the internet of things for estimating personal pollution exposure. Int. J. Environ. Res. Public Health 2019, 16, 3130. [Google Scholar] [CrossRef] [Green Version]
- Srimuruganandam, B.; Nagendra, S.M.S. Source characterization of PM10 and PM2.5 mass using a chemical mass balance model at urban roadside. Sci. Total Environ. 2012, 433, 8–19. [Google Scholar] [CrossRef]
- Braniš, M.; Řezáčová, P.; Domasová, M. The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2.5, and PM1 in a classroom. Environ. Res. 2005, 99, 143–149. [Google Scholar] [CrossRef]
- Peralta, A.A.; Schwartz, J.; Gold, D.R.; Coull, B.; Koutrakis, P. Associations between PM2.5 metal components and QT interval length in the Normative Aging Study. Environ. Res. 2021, 195, 110827. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zettsu, K. Decoder Transfer Learning for Predicting Personal Exposure to Air Pollution. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 5620–5629. [Google Scholar]
- Pun, V.C.; Manjourides, J.; Suh, H. Association of ambient air pollution with depressive and anxiety symptoms in older adults: Results from the NSHAP study. Environ. Health Perspect. 2017, 125, 342–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R.; Spengler, J. Particles in Our Air: Exposures & Health Effects; Harvard University Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Han, S.; Bian, H.; Feng, Y.; Liu, A.; Li, X.; Zeng, F.; Zhang, X. Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol Air Qual. Res. 2011, 11, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- Hansel, N.N.; McCormack, M.C.; Kim, V. The Effects of Air Pollution and Temperature on COPD. COPD J. Chronic Obstr. Pulm. Dis. 2016, 13, 372–379. [Google Scholar] [CrossRef]
- Lin, M.T.; Kor, C.T.; Chang, C.C.; Chai, W.H.; Soon, M.S.; Ciou, Y.S.; Bin Lian, I.; Chang, C.C. Association of meteorological factors and air NO2 and O3 concentrations with acute exacerbation of elderly chronic obstructive pulmonary disease. Sci. Rep. 2018, 8, 10192. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Hopke, P.K.; Goudarzi, G.; Daryanoosh, S.M.; Jourvand, M.; Basiri, H. Cardiopulmonary mortality and COPD attributed to ambient ozone. Environ. Res. 2017, 152, 336–341. [Google Scholar] [CrossRef]
- Goniewicz, M.L.; Czogała, J.; Kośmider, L.; Koszowski, B.; Zielińska-Danch, W.; Sobczak, A. Exposure to carbon monoxide from second-hand tobacco smoke in Polish pubs. Cent. Eur. J. Public Health 2009, 17, 220–222. [Google Scholar] [CrossRef] [Green Version]
- Singla, S.; Bansal, D.; Misra, A.; Raheja, G. Towards an integrated framework for air quality monitoring and exposure estimation—A review. Environ. Monit. Assess. 2018, 190, 562. [Google Scholar] [CrossRef]
- Sulfur Dioxide Effects on Health. Available online: https://www.nps.gov/subjects/air/humanhealth-sulfur.htm (accessed on 24 June 2022).
- Khan, R.R.; Siddiqui, M.J. Review on effects of particulates: Sulfur dioxide and nitrogen dioxide on human health. Int. Res. J. Environ. Sci. 2014, 3, 70–73. [Google Scholar]
- Zhu, L.; Zhang, Y.; Wu, Z.; Zhang, C. Spatio-Temporal Characteristics of SO2 across Weifang from 2008 to 2020. Int. J. Environ. Res. Public Health 2021, 18, 12206. [Google Scholar] [CrossRef] [PubMed]
- Marty, M.; Spurlock, F.; Barry, T. Chapter 19-Volatile Organic Compounds from Pesticide Application and Contribution to Tropospheric Ozone. In Hayes’ Handbook of Pesticide Toxicology; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Fischer, S.; Trefz, P.; Bergmann, A.; Steffens, M.; Ziller, M.; Miekisch, W.; Schubert, J.S.; Köhler, H.; Reinhold, P. Physiological variability in volatile organic compounds (VOCs) in exhaled breath and released from faeces due to nutrition and somatic growth in a standardized caprine animal model. J. Breath Res. 2015, 9, 27108. [Google Scholar] [CrossRef]
- Kumar, P.; Skouloudis, A.N.; Bell, M.; Viana, M.; Carotta, M.C.; Biskos, G.; Morawska, L. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Sci. Total Environ. 2016, 560–561, 150–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coulby, G.; Clear, A.; Jones, O.; Godfrey, A. A scoping review of technological approaches to environmental monitoring. Int. J. Environ. Res. Public Health 2020, 17, 3995. [Google Scholar] [CrossRef]
- Azuma, K.; Kagi, N.; Yanagi, U.; Osawa, H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ. Int. 2018, 121, 51–56. [Google Scholar] [CrossRef]
- Shan, X.; Zhou, J.; Chang, V.W.-C.; Yang, E.-H. Comparing mixing and displacement ventilation in tutorial rooms: Students’ thermal comfort, sick building syndromes, and short-term performance. Build. Environ. 2016, 102, 128–137. [Google Scholar] [CrossRef]
- Contini, M.; Angelucci, A.; Aliverti, A.; Gugliandolo, P.; Pezzuto, B.; Berna, G.; Romani, S.; Tedesco, C.C.; Agostoni, P. Comparison between PtCO2 and PaCO2 and Derived Parameters in Heart Failure Patients during Exercise: A Preliminary Study. Sensors 2021, 21, 6666. [Google Scholar] [CrossRef]
- Idrees, Z.; Zheng, L. Low cost air pollution monitoring systems: A review of protocols and enabling technologies. J. Ind. Inf. Integr. 2020, 17, 100123. [Google Scholar] [CrossRef]
- Dias, D.; Tchepel, O. Spatial and temporal dynamics in air pollution exposure assessment. Int. J. Environ. Res. Public Health 2018, 15, 558. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Park, J.; Cho, M.; Lee, C.; Lee, J.; Lee, C. Environmental health surveillance system for a population using advanced exposure assessment. Toxics 2020, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Saini, J.; Dutta, M.; Marques, G. Sensors for indoor air quality monitoring and assessment through Internet of Things: A systematic review. Environ. Monit. Assess. 2021, 193, 66. [Google Scholar] [CrossRef] [PubMed]
- Fisk, W.J.; Rosenfeld, A.H. Estimates of improved productivity and health from better indoor environments. Indoor Air 1997, 7, 158–172. [Google Scholar] [CrossRef]
- Lu, Y. Beyond air pollution at home: Assessment of personal exposure to PM2.5 using activity-based travel demand model and low-cost air sensor network data. Environ. Res. 2021, 201, 111549. [Google Scholar] [CrossRef] [PubMed]
- Asimina, S.; Chapizanis, D.; Karakitsios, S.; Kontoroupis, P.; Asimakopoulos, D.N.; Maggos, T.; Sarigiannis, D. Assessing and enhancing the utility of low-cost activity and location sensors for exposure studies. Environ. Monit. Assess. 2018, 190, 155. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Kou, L.; Chai, Y.; Kwan, M.-P. Associations of co-exposures to air pollution and noise with psychological stress in space and time: A case study in Beijing, China. Environ. Res. 2021, 196, 110399. [Google Scholar] [CrossRef] [PubMed]
- Narayana, M.V.; Jalihal, D.; Nagendra, S.M. Establishing A Sustainable Low-Cost Air Quality Monitoring Setup: A Survey of the State-of-the-Art. Sensors 2022, 22, 394. [Google Scholar] [CrossRef]
- Concas, F.; Mineraud, J.; Lagerspetz, E.; Varjonen, S.; Liu, X.; Puolamäki, K.; Nurmi, P.; Tarkoma, S. Low-cost outdoor air quality monitoring and sensor calibration: A survey and critical analysis. ACM Trans. Sens. Netw. 2021, 17, 1–44. [Google Scholar] [CrossRef]
- Aleixandre, M.; Gerboles, M. Review of small commercial sensors for indicative monitoring of ambient gas. Chem. Eng. Trans. 2012, 30, 169–174. [Google Scholar]
- Moseley, P.T. Solid state gas sensors. Meas. Sci. Technol. 1997, 8, 223. [Google Scholar] [CrossRef]
- Burgués, J.; Marco, S. Low power operation of temperature-modulated metal oxide semiconductor gas sensors. Sensors 2018, 18, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shum, L.V.; Rajalakshmi, P.; Afonja, A.; McPhillips, G.; Binions, R.; Cheng, L.; Hailes, S. On the Development of a Sensor Module for real-time Pollution Monitoring. In Proceedings of the 2011 International Conference on Information Science and Applications, Jeju, Korea, 26–29 April 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–9. [Google Scholar]
- Chen, Z.; Chen, Z.; Song, Z.; Ye, W.; Fan, Z. Smart gas sensor arrays powered by artificial intelligence. J. Semicond. 2019, 40, 111601. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, C.; Jiang, S.; Li, Y.J.; Wu, D.; Li, M.; Cheng, P.; Yang, W.; Cheng, C.; Li, L. Field comparison of electrochemical gas sensor data correction algorithms for ambient air measurements. Sens. Actuators B Chem. 2021, 327, 128897. [Google Scholar] [CrossRef]
- Palzer, S. Photoacoustic-based gas sensing: A review. Sensors 2020, 20, 2745. [Google Scholar] [CrossRef] [PubMed]
- Scholz, L.; Perez, A.O.; Bierer, B.; Eaksen, P.; Wöllenstein, J.; Palzer, S. Miniature low-cost carbon dioxide sensor for mobile devices. IEEE Sens. J. 2017, 17, 2889–2895. [Google Scholar] [CrossRef]
- Yi, W.Y.; Lo, K.M.; Mak, T.; Leung, K.S.; Leung, Y.; Meng, M.L. A survey of wireless sensor network based air pollution monitoring systems. Sensors 2015, 15, 31392–31427. [Google Scholar] [CrossRef] [Green Version]
- Occhipinti, L.; Oluwasanya, P. Particulate matter monitoring: Past, present and future. Int. J. Earth Environ. Sci. 2017, 2, 144. [Google Scholar] [CrossRef]
- Foncellino, F.; Barretta, L.; Massera, E.; Corigliano, A. Piezoelectric Mems for Microparticles Detection. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October–3 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Angelucci, A.; Aliverti, A. Telemonitoring systems for respiratory patients: Technological aspects. Pulmonology 2020, 26, 221–232. [Google Scholar] [CrossRef]
- Haven IAQ. Available online: https://haveniaq.com/ (accessed on 20 June 2022).
- ATMO. Air Quality Monitors for Consumers and Businesses. Available online: https://atmotube.com/ (accessed on 20 June 2022).
- WYND Technologies, Inc. Available online: https://www.wynd.ai/ (accessed on 20 June 2022).
- AirBeam|Habitat Map. Available online: https://www.habitatmap.org/airbeam (accessed on 20 June 2022).
- Aeroqual|Real-Time Air Quality Monitoring. Available online: https://www.aeroqual.com/ (accessed on 20 June 2022).
- i-BLADES|World’s First Smartcase. Available online: https://i-blades.com/ (accessed on 20 June 2022).
- Flow, by Plume Labs. Available online: https://plumelabs.com/en/flow/ (accessed on 20 June 2022).
- Huma-i|Air Quality Monitor. Available online: http://humatech.co.kr/index.php?lan=eng (accessed on 20 June 2022).
- Bales, E.; Nikzad, N.; Quick, N.; Ziftci, C.; Patrick, K.; Griswold, W. Citisense: Mobile air quality sensing for individuals and communities design and deployment of the citisense mobile air-quality system. In Proceedings of the 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, San Diego, CA, USA, 21–24 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 155–158. [Google Scholar]
- Tian, R.; Dierk, C.; Myers, C.; Paulos, E. Mypart: Personal, portable, accurate, airborne particle counting. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 1338–1348. [Google Scholar]
- Dieffenderfer, J.; Goodell, H.; Mills, S.; McKnight, M.; Yao, S.; Lin, F.; Beppler, E.; Bent, B.; Lee, B.; Misra, V. Low-power wearable systems for continuous monitoring of environment and health for chronic respiratory disease. IEEE J. Biomed. Health Inform. 2016, 20, 1251–1264. [Google Scholar] [CrossRef]
- Mallires, K.R.; Wang, D.; Tipparaju, V.V.; Tao, N. Developing a low-cost wearable personal exposure monitor for studying respiratory diseases using metal–oxide sensors. IEEE Sens. J. 2019, 19, 8252–8261. [Google Scholar] [CrossRef]
- Cho, H. Personal environmental monitoring system and network platform. In Proceedings of the 2015 9th International Conference on Sensing Technology (ICST), Auckland, New Zealand, 8–10 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 751–756. [Google Scholar]
- Fletcher, R.R.; Oreskovic, N.M.; Robinson, A.I. Design and clinical feasibility of personal wearable monitor for measurement of activity and environmental exposure. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 874–877. [Google Scholar]
- Wu, F.; Redouté, J.-M.; Yuce, M.R. We-safe: A self-powered wearable iot sensor network for safety applications based on lora. IEEE Access 2018, 6, 40846–40853. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Karakitsios, S.P.; Antonakopoulou, M.P.; Gotti, A. Exposure analysis of accidental release of mercury from compact fluorescent lamps (CFLs). Sci. Total Environ. 2012, 435, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Aliverti, A.; Evangelisti, M.; Angelucci, A. Wearable Tech for Long-Distance Runners. In The Running Athlete: A Comprehensive Overview of Running in Different Sports; Canata, G.L., Jones, H., Krutsch, W., Thoreux, P., Vascellari, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 77–89. ISBN 978-3-662-65064-6. [Google Scholar]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Allan, M.; Richardson, G.M. Probability density functions describing 24-h inhalation rates for use in human health risk assessments. Hum. Ecol. Risk Assess. Int. J. 1998, 4, 379–408. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Donaire-Gonzalez, D.; Rivas, I.; de Castro, M.; Cirach, M.; Hoek, G.; Seto, E.; Jerrett, M.; Sunyer, J. Variability in and agreement between modeled and personal continuously measured black carbon levels using novel smartphone and sensor technologies. Environ. Sci. Technol. 2015, 49, 2977–2982. [Google Scholar] [CrossRef]
- Antonelli, A.; Guilizzoni, D.; Angelucci, A.; Melloni, G.; Mazza, F.; Stanzi, A.; Venturino, M.; Kuller, D.; Aliverti, A. Comparison between the AirgoTM Device and a Metabolic Cart during Rest and Exercise. Sensors 2020, 20, 3943. [Google Scholar] [CrossRef]
- Angelucci, A.; Cavicchioli, M.; Cintorrino, I.A.; Lauricella, G.; Rossi, C.; Strati, S.; Aliverti, A. Smart textiles and sensorized garments for physiological monitoring: A review of available solutions and techniques. Sensors 2021, 21, 814. [Google Scholar] [CrossRef]
- Angelucci, A.; Kuller, D.; Aliverti, A. A home telemedicine system for continuous respiratory monitoring. IEEE J. Biomed. Health Inform. 2020, 25, 1247–1256. [Google Scholar] [CrossRef]
- Boulos, M.N.K.; Yang, S.P. Mobile physical activity planning and tracking: A brief overview of current options and desiderata for future solutions. mHealth 2021, 7, 13. [Google Scholar] [CrossRef]
- Mahajan, S.; Tang, Y.-S.; Wu, D.-Y.; Tsai, T.-C.; Chen, L.-J. Car: The clean air routing algorithm for path navigation with minimal PM2.5 exposure on the move. IEEE Access 2019, 7, 147373–147382. [Google Scholar] [CrossRef]
- Luo, J.; Boriboonsomsin, K.; Barth, M. Reducing pedestrians’ inhalation of traffic-related air pollution through route choices: Case study in California suburb. J. Transp. Health 2018, 10, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Gong, B.; Ordieres-Meré, J. Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: Case study of Hong Kong. Environ. Model. Softw. 2016, 84, 290–303. [Google Scholar] [CrossRef]
- Stojić, A.; Maletić, D.; Stojić, S.S.; Mijić, Z.; Šoštarić, A. Forecasting of VOC emissions from traffic and industry using classification and regression multivariate methods. Sci. Total Environ. 2015, 521, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Boso, À.; Álvarez, B.; Oltra, C.; Garrido, J.; Muñoz, C.; Hofflinger, Á. Out of sight, out of mind: Participatory sensing for monitoring indoor air quality. Environ. Monit. Assess. 2020, 192, 104. [Google Scholar] [CrossRef] [PubMed]
- Palmisani, J.; Di Gilio, A.; Viana, M.; de Gennaro, G.; Ferro, A. Indoor air quality evaluation in oncology units at two European hospitals: Low-cost sensors for TVOCs, PM2.5 and CO2 real-time monitoring. Build. Environ. 2021, 205, 108237. [Google Scholar] [CrossRef]
- Vassella, C.C.; Koch, J.; Henzi, A.; Jordan, A.; Waeber, R.; Iannaccone, R.; Charrière, R. From spontaneous to strategic natural window ventilation: Improving indoor air quality in Swiss schools. Int. J. Hyg. Environ. Health 2021, 234, 113746. [Google Scholar] [CrossRef]
- Christian, H.; Lester, L.; Trost, S.G.; Schipperijn, J.; Pereira, G.; Franklin, P.; Wheeler, A.J. Traffic exposure, air pollution and children’s physical activity at early childhood education and care. Int. J. Hyg. Environ. Health 2022, 240, 113885. [Google Scholar] [CrossRef]
Pollutant | Sources | Health Impact |
---|---|---|
PM10 PM2.5 Ultrafine PM |
| |
NO2 |
|
|
O3 |
|
|
SO2 |
|
|
CO2 |
|
|
VOCs |
|
|
CO |
|
|
Sensor | Principal Detected Pollutant | Advantages | Disadvantages |
---|---|---|---|
MOS | CO, CO2, NO, NO2, NOx, O3, NMHCs | Small size, low prize, high sensitivity, wide input range, high resilience to environmental condition, longevity | Power consumption, cross-sensitivity, recalibration, strong impact of temperature and humidity |
EC | CO, NO, NO2, NOx, O3 | Low power consumption, specificity, accuracy | Longevity, resilience, strong amplification, dimensions |
NDIR | CO2 | Sensitivity, reliability | Dimensions, cost |
PAS | CO2 | Dimensions, cost, sensitivity, reliability | Not reported |
Light scattering | PM | Response time, accuracy | Dimensions, cost |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernasconi, S.; Angelucci, A.; Aliverti, A. A Scoping Review on Wearable Devices for Environmental Monitoring and Their Application for Health and Wellness. Sensors 2022, 22, 5994. https://doi.org/10.3390/s22165994
Bernasconi S, Angelucci A, Aliverti A. A Scoping Review on Wearable Devices for Environmental Monitoring and Their Application for Health and Wellness. Sensors. 2022; 22(16):5994. https://doi.org/10.3390/s22165994
Chicago/Turabian StyleBernasconi, Sara, Alessandra Angelucci, and Andrea Aliverti. 2022. "A Scoping Review on Wearable Devices for Environmental Monitoring and Their Application for Health and Wellness" Sensors 22, no. 16: 5994. https://doi.org/10.3390/s22165994
APA StyleBernasconi, S., Angelucci, A., & Aliverti, A. (2022). A Scoping Review on Wearable Devices for Environmental Monitoring and Their Application for Health and Wellness. Sensors, 22(16), 5994. https://doi.org/10.3390/s22165994