Personalization of Hearing Aid Fitting Based on Adaptive Dynamic Range Optimization
Abstract
:1. Introduction
2. Overview of ADRO
3. Overview of MLIRL Personalization Method
4. Experimental Setup
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dillon, H. Tutorial Compression? Yes, But for Low or High Frequencies, for Low or High Intensities, and with What Response Times? Ear Hear. 1996, 17, 287–307. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S. The Compression Handbook, fourth edition, Starkey Hearing Research and Technology; Starkey Hearing Research and Technology: Eden Prairie, MN, USA, 2011; Available online: https://order.starkeypro.com/pdfs/The_Compression_Handbook.pdf (accessed on 21 September 2021).
- Chalupper, J.; Junius, D.; Powers, T. Algorithm lets users train aid to optimize compression, frequency shape, and gain. Hear. J. 2009, 62, 26–28. [Google Scholar] [CrossRef]
- Dillon, H.; Zakis, J.; McDermott, H.; Keidser, G.; Dreschler, W.; Convery, E. The trainable hearing aid: What will it do for clients and clinicians? Hear. J. 2006, 59, 30. [Google Scholar] [CrossRef]
- Yoon, S.; Nam, K.; Yook, S.; Cho, B.; Jang, D.; Hong, S.; Kim, I. A Trainable Hearing Aid Algorithm Reflecting Individual Preferences for Degree of Noise-Suppression, Input Sound Level, and Listening Situation. Clin. Exp. Otorhinolaryngol. 2017, 10, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Keidser, G.; Alamudi, K. Real-Life Efficacy and Reliability of Training a Hearing Aid. Ear Hear. 2013, 34, 619–629. [Google Scholar] [CrossRef]
- Johansen, B.; Petersen, M.; Korzepa, M.; Larsen, J.; Pontoppidan, N.; Larsen, J. Personalizing the Fitting of Hearing Aids by Learning Contextual Preferences from Internet of Things Data. Computers 2017, 7, 1. [Google Scholar] [CrossRef]
- Aldaz, G.; Puria, S.; Leifer, L. Smartphone-Based System for Learning and Inferring Hearing Aid Settings. J. Am. Acad. Audiol. 2016, 27, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Wong, L. Evidence on Self-Fitting Hearing Aids. Trends Amplif. 2011, 15, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Nelson, P.; Perry, T.; Gregan, M.; VanTasell, D. Self-Adjusted Amplification Parameters Produce Large Between-Subject Variability and Preserve Speech Intelligibility. Trends Hear. 2018, 22, 2331216518798264. [Google Scholar] [CrossRef]
- Søgaard Jensen, N.; Hau, O.; Bagger Nielsen, J.; Bundgaard Nielsen, T.; Vase Legarth, S. Perceptual Effects of Adjusting Hearing-Aid Gain by Means of a Machine-Learning Approach Based on Individual User Preference. Trends Hear. 2019, 23, 2331216519847413. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Nielsen, J.; Larsen, J. Perception-Based Personalization of Hearing Aids Using Gaussian Processes and Active Learning. IEEE/ACM Trans. Audio Speech Lang. Processing 2015, 23, 162–173. [Google Scholar] [CrossRef]
- Alamdari, N.; Lobarinas, E.; Kehtarnavaz, N. Personalization of Hearing Aid Compression by Human-in-the-Loop Deep Reinforcement Learning. IEEE Access 2020, 8, 203503–203515. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Alamdari, N.; Campbell, C.; Lobarinas, E.; Kehtarnavaz, N. Word recognition clinical testing of personalized deep reinforcement learning compression. In Proceedings of the 2020 IEEE 14th Dallas Circuits and Systems Conference (DCAS), Dallas, TX, USA, 15–16 November 2020. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Lobarinas, E.; Kehtarnavaz, N. Online Personalization of Compression in Hearing Aids via Maximum Likelihood Inverse Reinforcement Learning. IEEE Access 2022, 10, 58537–58546. [Google Scholar] [CrossRef]
- Blamey, P. Adaptive Dynamic Range Optimization (ADRO): A Digital Amplification Strategy for Hearing Aids and Cochlear Implants. Trends Amplif. 2005, 9, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Blamey, P.; James, C.; Wildi, K.; McDermott, H.; Martin, L. Adaptive Dynamic Range Optimization Sound Processor. U.S. Patent No. 6,731,767 B1, 4 May 2004. [Google Scholar]
- Blamey, P.; James, C.; McDermott, H.; Martin, L.; Wildi, K. Adaptive Dynamic Range Optimization Sound Processor. U.S. Patent No. 7,366,315 B2, 29 April 2008. [Google Scholar]
- Blamey, P.; James, C.; McDermott, H.; Martin, L.; Wildi, K. Adaptive Dynamic Range Optimization Sound Processor. U.S. Patent No. 7,978,868 B2, 12 July 2011. [Google Scholar]
- Mourad, N.; Ezzeddine, A.; Nadjar Araabi, B.; Nili Ahmadabadi, M. Learning from Demonstrations and Human Evaluative Feedbacks: Handling Sparsity and Imperfection Using Inverse Reinforcement Learning Approach. J. Robot. 2020, 2020, 3849309. [Google Scholar] [CrossRef]
- Arora, S.; Doshi, P. A survey of inverse reinforcement learning: Challenges, methods and progress. Artif. Intell. 2021, 297, 103500. [Google Scholar] [CrossRef]
- Kabal, P. TSP Speech Database. Available online: https://www-mmsp.ece.mcgill.ca/Documents/Downloads/TSPspeech/TSPspeech.pdf (accessed on 7 May 2020).
- St, L.; Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 1989, 6, 259–272. [Google Scholar] [CrossRef]
- Tillman, T.; Carhart, R. An Expanded Test for Speech Discrimination Utilizing GNC Monosyllabic Words: Northwestern University Auditory Test No. 6. 1966. Available online: https://apps.dtic.mil/sti/citations/AD0639638 (accessed on 10 November 2021).
Subject | Audiogram (dB) | Comfort Targets (CTs) of Standard ADRO (dB) | Comfort Targets (CTs) of Personalized ADRO (dB) |
---|---|---|---|
1 | (20, 20, 15, 15, 15, 15, 15, 15, 25, 40) | (70, 70, 70, 70, 72, 75, 77, 80, 75, 70) | (35, 35, 35, 35, 55, 75, 57, 40, 37, 35) |
2 | (5, 10, 10, 15, 15, 15, 15, 20, 20, 30) | (70, 70, 75, 80, 80, 80, 80, 80, 77, 75) | (35, 35, 37, 40, 60, 80, 80, 80, 77, 75) |
3 | (20, 25, 15, 25, 25, 25, 20, 20, 30, 35) | (75,75, 75, 75, 72, 70, 75, 80, 72, 65) | (75, 75, 75, 75, 55, 35, 57, 80, 72, 65) |
4 | (45, 40, 40, 40, 40, 45, 40, 35, 45, 50) | (78, 78, 80, 82, 81, 80, 80, 80, 77, 75) | (39, 39, 40, 41, 40, 40, 60, 80, 58, 37) |
5 | (40, 45, 50, 65, 65, 55, 45, 50, 60, 60) | (76, 76, 79, 82, 76, 70, 71, 72, 73, 75) | (38, 38, 60, 82, 58, 35, 53, 72, 54, 37) |
6 | (20, 20, 20, 20, 25, 25, 30, 40, 50, 45) | (78, 78, 80, 82, 79, 77, 78, 80, 80, 80) | (39, 39, 59, 80, 59, 38, 59, 80, 80, 80) |
7 | (15, 15, 25, 25, 30, 30, 30, 25, 40, 45) | (76, 76, 79, 82, 82, 82, 79, 77, 71, 65) | (38, 38, 39, 41, 41, 41, 59, 77, 71, 65) |
8 | (40, 30, 20, 20, 10, 10, 20, 50, 55, 40) | (82, 82, 77, 72, 71, 70, 72, 75, 70, 65) | (41, 41, 38, 36, 35, 35, 36, 37, 34, 32) |
9 | (15, 15, 10, 20, 20, 20, 20, 35, 50, 40) | (80, 80, 81, 82, 78, 75, 80, 85, 82, 80) | (40, 40, 40, 41, 39, 37, 39, 42, 61, 80) |
10 | (10, 15, 10, 35, 45, 45, 30, 25, 15, 20) | (56, 56, 61, 67, 67, 67, 66, 65, 57, 50) | (28, 28, 30, 33, 33, 33, 32, 32, 41, 50) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, A.; Akbarzadeh, S.; Lobarinas, E.; Kehtarnavaz, N. Personalization of Hearing Aid Fitting Based on Adaptive Dynamic Range Optimization. Sensors 2022, 22, 6033. https://doi.org/10.3390/s22166033
Ni A, Akbarzadeh S, Lobarinas E, Kehtarnavaz N. Personalization of Hearing Aid Fitting Based on Adaptive Dynamic Range Optimization. Sensors. 2022; 22(16):6033. https://doi.org/10.3390/s22166033
Chicago/Turabian StyleNi, Aoxin, Sara Akbarzadeh, Edward Lobarinas, and Nasser Kehtarnavaz. 2022. "Personalization of Hearing Aid Fitting Based on Adaptive Dynamic Range Optimization" Sensors 22, no. 16: 6033. https://doi.org/10.3390/s22166033
APA StyleNi, A., Akbarzadeh, S., Lobarinas, E., & Kehtarnavaz, N. (2022). Personalization of Hearing Aid Fitting Based on Adaptive Dynamic Range Optimization. Sensors, 22(16), 6033. https://doi.org/10.3390/s22166033