A 13 µW Analog Front-End with RRAM-Based Lowpass FIR Filter for EEG Signal Detection
Abstract
:1. Introduction
2. Proposed AFE Architecture
2.1. Chopper-Stabilized Amplifiers
2.2. Ripple Suppression Circuit
2.3. RRAM-based Lowpass FIR Filter
2.4. The 8-bit SAR ADC
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, T.; Choi, W.; Kim, J.; Je, M. Implantable Neural-Recording Modules for Monitoring Electrical Neural Activity in the Cen-tral and Peripheral Nervous Systems. In Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 9–12 August 2020; pp. 533–536. [Google Scholar]
- Shulyzki, R.; Abdelhalim, K.; Bagheri, A.; Salam, M.T.; Florez, C.M.; Velazquez, J.L.P.; Carlen, P.L.; Genov, R. 320-Channel Active Probe for High-Resolution Neuromonitoring and Responsive Neurostimulation. IEEE Trans. Biomed. Circuits Syst. 2014, 9, 34–49. [Google Scholar] [CrossRef]
- Das, R.; Moradi, F.; Heidari, H. Biointegrated and Wirelessly Powered Implantable Brain Devices: A Review. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Mok, E.; Huang, J.; Cui, L.; Lee, A.-H.; Leung, V.; Mercier, P.; Shellhammer, S.; Larson, L.; Asbeck, P.; et al. An Implantable Wireless Network of Distributed Microscale Sensors for Neural Applications. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 871–874. [Google Scholar] [CrossRef]
- Ng, K.A.; Yuan, C.; Rusly, A.; Do, A.-T.; Zhao, B.; Liu, S.-C.; Peh, W.Y.X.; Thow, X.Y.; Voges, K.; Lee, S.; et al. A Wireless Multi-Channel Peripheral Nerve Signal Acquisition System-on-Chip. IEEE J. Solid-State Circuits 2019, 54, 2266–2280. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Yeh, C.-Y.; Huang, P.-Y.; Wang, Z.-Y.; Cheng, H.-H.; Li, Y.-T.; Chuang, C.-F.; Huang, P.-C.; Tang, K.-T.; Ma, H.-P.; et al. A Battery-Less, Implantable Neuro-Electronic Interface for Studying the Mechanisms of Deep Brain Stimula-tion in Rat Models. IEEE Trans. Biomed. Circuits Syst. 2015, 10, 98–112. [Google Scholar] [CrossRef]
- Ts’O, D.Y.; Frostig, R.D.; Lieke, E.E.; Grinvald, A. Functional Organization of Primate Visual Cortex Revealed by High Resolution Optical Imaging. Science 1990, 249, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Harison, R.R.; Charles, C. A low-power low-noise CMOS amplifier for neural recording applications. IEEE Trans. Solid-State Circuits 2003, 38, 958–965. [Google Scholar] [CrossRef]
- Qian, C.; Parramon, J.; Sánchez-Sinencio, E. A Micropower Low-Noise Neural Recording Front-End Circuit for Epileptic Seizure Detection. IEEE J. Solid-State Circuits 2011, 46, 1392–1405. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Hu, X.; Guo, Y.; Jialin, L.; Liu, M.; Li, B.; Chen, H. A CMOS frontend chip for implantable neural recording with wide voltage supply range. J. Semicond. 2015, 36, 105003. [Google Scholar] [CrossRef]
- Ha, U.; Lee, J.; Kim, M.; Roh, T.; Choi, S.; Yoo, H.-J. An EEG-NIRS Multimodal SoC for Accurate Anesthesia Depth Monitoring. IEEE J. Solid-State Circuits 2018, 53, 1830–1843. [Google Scholar] [CrossRef]
- Ren, Y.; He, J.; Liu, J.; Pan, J.; Wang, X.; Li, C. An 8-Channel Wearable EEG Acquisition Front-End IC with Integrated Multi-Functions. In Proceedings of the 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Xi’an, China, 12–14 June 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Diab, M.S.; Mahmoud, S.A. 14:5nW; 30 dB Analog Front-End in 90-nm Technology for Biopotential Signal Detection. In Proceedings of the 14:5nW; 30 dB Analog Front-End in 90-nm Technology for Biopotential Signal Detection, Milan, Italy, 7–9 July 2020; pp. 681–684. [Google Scholar] [CrossRef]
- Morsalin, S.M.S.; Lai, S.-C. Front-end circuit design for electroencephalography (EEG) signal. In Proceedings of the 2020 Indo—Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN), Rajpura, India, 7–15 February 2020; pp. 170–175. [Google Scholar]
- Higashi, H.; Tanaka, T. Simultaneous Design of FIR Filter Banks and Spatial Patterns for EEG Signal Classification. IEEE Trans. Biomed. Eng. 2012, 60, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Abdelhalim, K.; Genov, R. 915-MHz wireless 64-channel neural recording SoC with programmable mixed-signal FIR filters. In Proceedings of the 2011 Proceedings of the ESSCIRC (ESSCIRC), Helsinki, Finland, 12–16 September 2011; pp. 223–226. [Google Scholar]
- Anumanchipalli, G.K.; Chartier, J.; Chang, E.F. Speech synthesis from neural decoding of spoken sentences. Nature 2019, 568, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Qaraqe, M.; Ismail, M.; Serpedin, E. Band-sensitive seizure onset detection via CSP-enhanced EEG features. Epilepsy Behav. 2015, 50, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Mirebrahimi, S.-N.; Merrikh-Bayat, F. Programmable discrete-time type I and type II FIR filter design on the memristor crossbar structure. Analog Integr. Circuits Signal Process. 2014, 79, 529–541. [Google Scholar] [CrossRef]
- Nourazar, M.; Rashtchi, V.; Merrikh-Bayat, F.; Azarpeyvand, A. Towards memristor-based approximate accelerator: Application to complex-valued FIR filter bank. Analog Integr. Circuits Signal Process. 2018, 96, 577–588. [Google Scholar] [CrossRef]
- Alhammadi, A.A.; Nazzal, T.B.; Mahmoud, S.A. A CMOS EEG detection system with a configurable analog front-end architecture. Analog Integr. Circuits Signal Process. 2016, 89, 151–176. [Google Scholar] [CrossRef]
- Wei, R.S.; Zhu, R. Low power chopper-stabilized amplifier. China Integr. Circuit 2017, 6, 30–34. [Google Scholar]
- Mohammadpour, A.; Nabavi, A. Design and analysis of a low-noise saw-less receiver front-end resistant to strong out-of-band blocker. Analog Integr. Circuits Signal Process. 2017, 93, 217–235. [Google Scholar] [CrossRef]
- Hasan, M.N.; Lee, K.S. A wide linear output range biopotential amplifie for physiological measurement front end. IEEE Trans. Instrum. Meas. 2015, 64, 120–131. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Schafer, R.W.; Buck, J.R. Discrete-Time Signal Processing; Prentice Hall: Upper Saddle River, NJ, USA, 1977. [Google Scholar]
- Liu, Z.; Tang, J.; Gao, B.; Yao, P.; Li, X.; Liu, D.; Zhou, Y.; Qian, H.; Hong, B.; Wu, H. Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces. Nat. Commun. 2020, 11, 4234. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Q.; Chen, C.; Dong, D.; Xu, X.; Chen, Y.; Zhang, F. A 13 µW Analog Front-End with RRAM-Based Lowpass FIR Filter for EEG Signal Detection. Sensors 2022, 22, 6096. https://doi.org/10.3390/s22166096
Ren Q, Chen C, Dong D, Xu X, Chen Y, Zhang F. A 13 µW Analog Front-End with RRAM-Based Lowpass FIR Filter for EEG Signal Detection. Sensors. 2022; 22(16):6096. https://doi.org/10.3390/s22166096
Chicago/Turabian StyleRen, Qirui, Chengying Chen, Danian Dong, Xiaoxin Xu, Yong Chen, and Feng Zhang. 2022. "A 13 µW Analog Front-End with RRAM-Based Lowpass FIR Filter for EEG Signal Detection" Sensors 22, no. 16: 6096. https://doi.org/10.3390/s22166096
APA StyleRen, Q., Chen, C., Dong, D., Xu, X., Chen, Y., & Zhang, F. (2022). A 13 µW Analog Front-End with RRAM-Based Lowpass FIR Filter for EEG Signal Detection. Sensors, 22(16), 6096. https://doi.org/10.3390/s22166096