Circular Optical Phased Array with Large Steering Range and High Resolution
Abstract
:1. Introduction
2. Circular Array Geometry and Array Factor
- Angular beamwidth. In Figure 2a,c,d, the angular beamwidth of the array factor’s main lobe decreases exponentially as the number of rings (N) rises, the minimum ring radius (R0) increases, and the spacing between two adjacent rings (dr) expands. In contrast, the number of the optical antennas per single ring (M) has a minimum effect (Figure 2b), and thus the angular beamwidth remains virtually constant, or, more likely, its variation is too small to be distinguished with a 0.01° resolution.
- Sidelobe suppression ratio (SSR). The sidelobe suppression exponentially increases with the number of concentric rings (N) within an array (see Figure 2a). Moreover, as shown in Figure 2b, the sidelobe suppression increases with the number of elements per ring (M). On top of that, the dependence for even and odd element numbers is apparent. When M is even, as shown by stars in Figure 2b, the circular array is bilaterally symmetric at any direction in the x-y plane, and thus constructive interference of all elements dominates. The sidelobes of each sub-array rise at similar {θ,Φ} angles, leading to a slightly reduced main-to-sidelobe contrast level. This effect is shown in Figure 3a,b, with the number of elements per single ring being M = 4 and M = 8, respectively. Here, the level of the sidelobe suppression remains small. The bilateral symmetry is broken when M is odd (shown by dots in Figure 2b). The broken symmetry helps to reduce the magnitude of the grating sidelobes. As a result, the power is distributed more uniformly over the considered angular range with a distinct sidelobe suppression. Last, but not least, the sidelobe suppression is not strongly affected by variations in the minimum ring radius (R0) (see Figure 2c) as well as in the ring spacing (dr) (see Figure 2d). For example, with R0 ranging from 0 to 100 μm and dr ranging from 0 to 10 μm, the sidelobe suppression varies from a minimum of about 8 dB up to a maximum of 12 dB. These low variations are likely attributed to the fact that changes in R0 and dr do not substantially affect the symmetry of the array and have a minimal effect on the element periodicity.
3. Far-Field Pattern of Circular Array
4. Antenna Radiation Pattern
5. Beam Formation and Beam-Steering Performance
5.1. Monochromatic Array Operation
5.2. Multi-Wavelength Array Operation
6. Power Consumption and Optical Loss in Circular Array
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouazizi, M.; Ye, C.; Ohtsuki, T. 2D LIDAR-Based Approach for Activity Identification and Fall Detection. IEEE Internet Things J. 2021, 9, 10872–10890. [Google Scholar] [CrossRef]
- Lv, B.; Xu, H.; Wu, J.; Tian, Y.; Zhang, Y.; Zheng, Y.; Yuan, C.; Tian, S. LiDAR-Enhanced Connected Infrastructures Sensing and Broadcasting High-Resolution Traffic Information Serving Smart Cities. IEEE Access 2019, 7, 79895–79907. [Google Scholar] [CrossRef]
- Zhang, X.; Kwon, K.; Henriksson, J.; Luo, J.; Wu, M.C. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature 2022, 603, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Poulton, C.V.; Byrd, M.J.; Russo, P.; Timurdogan, E.; Khandaker, M.; Vermeulen, D.; Watts, M.R. Long-Range LiDAR and Free-Space Data Communication with High-Performance Optical Phased Arrays. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 7700108. [Google Scholar] [CrossRef]
- Xie, W.; Komljenovic, T.; Huang, J.; Tran, M.; Davenport, M.; Torres, A.; Pintus, P.; Bowers, J. Heterogeneous silicon photonics sensing for autonomous cars [Invited]. Opt. Express 2019, 27, 3642–3663. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, B. Mapping the world in 3D. Nat. Photonics 2010, 4, 429–430. [Google Scholar] [CrossRef]
- Heck, M.J.R. Highly integrated optical phased arrays: Photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 2017, 6, 93–107. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, Y.; Li, C.; Zhang, H.; Zhou, X.; Zhang, L. Integrated Optical Phased Arrays for Beam Forming and Steering. Appl. Sci. 2021, 11, 4017. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Zhang, Q.; Zhang, W. Si Photonics for Practical LiDAR Solutions. Appl. Sci. 2019, 9, 4225. [Google Scholar] [CrossRef]
- Hsu, C.P.; Li, B.; Solano-Rivas, B.; Gohil, A.R.; Donzella, V. A review and perspective on optical phased array for automotive LiDAR. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 8300416. [Google Scholar] [CrossRef]
- Doylend, J.K.; Heck, M.J.R.; Bovington, J.T.; Peters, J.D.; Coldren, L.A.; Bowers, J.E. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. Opt. Express 2011, 19, 21595–21604. [Google Scholar] [CrossRef]
- Guo, W.; Binetti, P.R.A.; Althouse, C.; Masanovic, M.L.; Ambrosius, H.P.M.M.; Johansson, L.A.; Coldren, L.A. Two-Dimensional Optical Beam Steering with InP-Based Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 6100212. [Google Scholar] [CrossRef]
- Hutchison, D.N.; Sun, J.; Doylend, J.K.; Kumar, R.; Heck, J.; Kim, W.; Phare, C.T.; Feshali, A.; Rong, H. High-resolution aliasing-free optical beam steering. Optica 2016, 3, 887–890. [Google Scholar] [CrossRef]
- Poulton, C.V.; Yaacobi, A.; Cole, D.B.; Byrd, M.J.; Raval, M.; Vermeulen, D.; Watts, M.R. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 2017, 42, 4091–4094. [Google Scholar] [CrossRef]
- Chung, S.W.; Abediasl, H.; Hashemi, H. A Monolithically Integrated Large-Scale Optical Phased Array in Sili-con-on-Insulator CMOS. IEEE J. Solid-State Circuits 2018, 53, 275–296. [Google Scholar] [CrossRef]
- Miller, S.A.; Chang, Y.-C.; Phare, C.T.; Shin, M.C.; Zadka, M.; Roberts, S.P.; Stern, B.; Ji, X.; Mohanty, A.; Gordillo, O.A.J.; et al. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica 2020, 7, 3–6. [Google Scholar] [CrossRef]
- Dostart, N.; Zhang, N.B.; Khilo, A.; Brand, M.; Al Qubaisi, K.; Onural, D.; Feldkhun, D.; Wagner, K.H.; Popović, M.A. Serpentine optical phased arrays for scalable integrated photonic lidar beam steering. Optica 2020, 7, 726–733. [Google Scholar] [CrossRef]
- Li, C.; Cao, X.; Wu, K.; Qiu, G.; Cai, M.; Zhang, G.; Li, X.; Chen, J. Blind zone-suppressed hybrid beam steering for solid-state Lidar. Photonics Res. 2021, 9, 1871–1880. [Google Scholar] [CrossRef]
- Van Acoleyen, K.; Rogier, H.; Baets, R. Two-dimensional optical phased array antenna on silicon-on-insulator. Opt. Express 2010, 18, 13655–13660. [Google Scholar] [CrossRef]
- Sun, J.; Timurdogan, E.; Yaacobi, A.; Hosseini, E.S.; Watts, M.R. Large-scale nanophotonic phased array. Nature 2013, 493, 195–199. [Google Scholar] [CrossRef]
- Abediasl, H.; Hashemi, H. Monolithic optical phased-array transceiver in a standard SOI CMOS process. Opt. Express 2015, 23, 6509–6519. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, R.; Khachaturian, A.; Hajimiri, A. A Nonuniform Sparse 2-D Large-FOV Optical Phased Array with a Low-Power PWM Drive. IEEE J. Solid-State Circuits 2019, 54, 1200–1215. [Google Scholar] [CrossRef]
- Ashtiani, F.; Aflatouni, F. N × N optical phased array with 2N phase shifters. Opt. Express 2019, 27, 27183–27190. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Lv, J.; Peng, C.; Hu, W. Fast beam steering enabled by a chip-scale optical phased array with 8 × 8 elements. Opt. Commun. 2020, 461, 125267. [Google Scholar] [CrossRef]
- Ginel-Moreno, P.; Sánchez-Postigo, A.; De-Oliva-Rubio, J.; Hadij-ElHouati, A.; Ye, W.N.; Wangüemert-Pérez, J.G.; Molina-Fernández, I.; Schmid, J.H.; Cheben, P.; Ortega-Moñux, A. Millimeter-long metamaterial surface-emitting antenna in the silicon photonics platform. Opt. Lett. 2021, 46, 3733–3736. [Google Scholar] [CrossRef]
- Guerber, S.; Fowler, D.; Charlet, I.; Grosse, P.; Abdoul-Carime, K.; Faugier-Tovar, J.; Szelag, B. Development, calibration and characterization of silicon photonics based optical phased arrays. In Proceedings of the SPIE OPTO Smart Photonic and Optoelectronic Integrated Circuits, Online, 6–11 March 2021. [Google Scholar]
- Song, Q.; Campione, S.; Boyraz, O.; Capolino, F. Silicon-based optical leaky wave antenna with narrow beam radiation. Opt. Express 2011, 19, 8735–8749. [Google Scholar] [CrossRef]
- Zhao, Q.; Guclu, C.; Huang, Y.; Capolino, F.; Boyraz, O. Experimental Demonstration of Directive Si3N4 Optical Leaky Wave Antennas with Semiconductor Perturbations. J. Light. Technol. 2016, 34, 4864–4871. [Google Scholar] [CrossRef]
- Hashiguchi, H.; Kondo, K.; Baba, T.; Arai, H. An Optical Leaky Wave Antenna by a Waffled Structure. J. Light. Technol. 2017, 35, 2273–2279. [Google Scholar] [CrossRef]
- Patel, S.K.; Sorathiya, V.; Guo, T.; Argyropoulos, C. Graphene-based directive optical leaky wave antenna. Microw. Opt. Technol. Lett. 2019, 61, 153–157. [Google Scholar] [CrossRef]
- Pita, J.L.; Aldaya, I.; Santana, O.J.S.; De Araujo, L.E.E.; Dainese, P.; Gabrielli, L.H. Side-lobe level reduction in bio-inspired optical phased-array antennas. Opt. Express 2017, 254, 30105–30114. [Google Scholar] [CrossRef]
- Dal Negro, L.; Boriskina, S.V. Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photonics Rev. 2012, 6, 178–218. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, D.; Pan, S. Fast and wide-range optical beam steering with ultralow side lobes by applying an optimized multi-circular optical phased array. Appl. Opt. 2018, 57, 4977–4984. [Google Scholar] [CrossRef] [PubMed]
- Manohar, V.; Rahmat-Samii, Y. Revisiting the Appearance of Grating Lobes for Antennas with Circular Periodicity. IEEE Trans. Antennas Propag. 2019, 67, 5723–5728. [Google Scholar] [CrossRef]
- Biulkowski, M.E.; Kurmukur, N.C. A Two-Ring Circular Phased-Array Antenna for Mobile Satellite Communications. IEEE Antennas Propag. Mag. 1999, 41, 14–23. [Google Scholar] [CrossRef]
- Bialkowski, M.E. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Noordin, N.H.; Zuniga, V.; El-Rayis, A.O.; Haridas, N.; Erdogan, A.T.; Arslan, T. Uniform Circular Arrays for Phased Array Antenna. In Proceedings of the Loughborough Antennas & Propagation Conference, Loughborough, UK, 14–15 November 2011. [Google Scholar]
- Cardoso, R.S.; Oliveira, L.P.; Hernandez-Figueroa, H.E. Assessment of Fermat’s Spiral Arrays for Photonic Dielectric Antennas. In Proceedings of the15th European Conference on Antennas and Propagation, Dusseldorf, Germany, 22–26 March 2021. [Google Scholar]
- Zeng, S.; Zhang, Y.; Zhu, J.; Wu, Z.; Chen, Y.; Yu, S. 360° on chip optical beam steering based on superposition of planar spiral orbital angular momentum waves. In Proceedings of the Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 23–27 June 2019. [Google Scholar]
- Liu, X.; Xiong, B.; Sun, C.; Hao, Z.; Wang, L.; Wang, J.; Han, Y.; Li, H.; Luo, Y. Circular optical phased array for 360° constant amplitude scanning. In Proceedings of the 10th International Conference on Information Optics and Photonics, Beijing, China, 8–11 July 2018. [Google Scholar]
- Liu, Q.; Benedikovic, D.; Smy, T.; Atieh, A.; Cheben, P.; Ye, W.N. Circular Optical Phased Arrays with Radial Nano-Antennas. Nanomaterials 2022, 12, 1938. [Google Scholar] [CrossRef] [PubMed]
- Doerr, C.R.; Buhl, L.L. Circular grating coupler for creating focused azimuthally and radially polarized beams. Opt. Lett. 2011, 36, 1209–1211. [Google Scholar] [CrossRef]
- Josefsson, L.; Persson, P. Conformal Array Antenna Theory and Design, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Orfanidis, S.J. Electromagnetic Waves and Antennas, 3rd ed.; Rutgers University: Piscataway, NJ, USA, 2004. [Google Scholar]
- Benedikovic, D.; Alonso-Ramos, C.; Pérez-Galacho, D.; Guerber, S.; Vakarin, V.; Marcaud, G.; Le Roux, X.; Cassan, E.; Marris-Morini, D.; Cheben, P.; et al. L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography. Opt. Lett. 2017, 42, 3439–3442. [Google Scholar] [CrossRef]
- Benedikovic, D.; Alonso-Ramos, C.; Guerber, S.; Le Roux, X.; Cheben, P.; Dupré, C.; Szelag, B.; Fowler, D.; Cassan, E.; Marris-Morini, D.; et al. Sub-decibel silicon grating couplers based on L-shaped waveguides and engineered subwavelength metamaterials. Opt. Express 2019, 27, 26239–26250. [Google Scholar] [CrossRef]
- Kamandar Dezfouli, M.; Grinberg, Y.; Melati, D.; Cheben, P.; Schmid, J.H.; Sánchez-Postigo, A.; Ortega-Moñux, A.; Wangüemert-Pérez, G.; Cheriton, R.; Janz, S.; et al. Perfectly vertical surface grating couplers using subwavelength engineering for increased feature sizes. Opt. Lett. 2020, 45, 3701–3704. [Google Scholar] [CrossRef]
- Khajavi, S.; Melati, D.; Cheben, P.; Schmid, J.H.; Liu, Q.; Xu, D.-X.; Ye, W.N. Compact and highly-efficient broadband surface grating antenna on a silicon platform. Opt. Express 2021, 29, 7003–7014. [Google Scholar] [CrossRef]
- Khajavi, S.; Melati, D.; Cheben, P.; Schmid, J.H.; Xu, D.-X.; Janz, S.; Ye, W.N. Design of compact silicon antennas based on high directionality gratings. In Proceedings of the IEEE Photonics Conference (IPC) 2020, Vancouver, BC, Canada, 28 September–1 October 2020. [Google Scholar]
- OptiFDTD from Optiwave Systems, Inc. Available online: https://optiwave.com/ (accessed on 1 May 2022).
- Rahim, A.; Goyvaerts, J.; Szelag, B.; Fedeli, J.-M.; Absil, P.; Aalto, T.; Harjanne, M.; Littlejohns, C.; Reed, G.; Winzer, G.; et al. Open-access silicon photonics platforms in Europe. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–18. [Google Scholar] [CrossRef]
- Benedikovic, D.; Alonso-Ramos, C.; Cheben, P.; Schmid, J.H.; Wang, S.; Xu, D.-X.; Lapointe, J.; Janz, S.; Halir, R.; Ortega-Moñux, A.; et al. High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure. Opt. Lett. 2015, 40, 4190–4193. [Google Scholar] [CrossRef] [PubMed]
- Halir, R.; Ortega-Moñux, A.; Benedikovic, D.; Mashanovich, G.Z.; Wangüemert-Pérez, J.-G.; Molina-Fernández, I.; Cheben, P. Subwavelength-grating metamaterial structures for silicon photonic devices. Proc. IEEE 2018, 106, 2144–2157. [Google Scholar] [CrossRef]
- Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength integrated photonics. Nature 2018, 560, 565–572. [Google Scholar] [CrossRef]
- Luque-González, J.M.; Sánchez-Postigo, A.; Hadij-ElHouati, A.; Ortega-Moñux, A.; Wangüemert-Pérez, J.G.; Schmid, J.H.; Cheben, P.; Molina-Fernández, Í.; Halir, R. A review of silicon subwavelength gratings: Building break-through devices with anisotropic metamaterials. Nanophotonics 2021, 10, 2765–2797. [Google Scholar] [CrossRef]
- Melati, D.; Kamandar Dezfouli, M.; Grinberg, Y.; Schmid, J.H.; Cheriton, R.; Janz, J.; Cheben, P.; Xu, D.-X. Design of Compact and Efficient Silicon Photonic Micro Antennas with Perfectly Vertical Emission. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 8200110. [Google Scholar] [CrossRef]
- Watts, M.R.; Sun, J.; DeRose, C.; Trotter, D.C.; Young, R.W.; Nielson, G.N. Adiabatic thermo-optic Mach–Zehnder switch. Opt. Express 2013, 38, 733–735. [Google Scholar] [CrossRef]
- Jacques, M.; Samani, A.; El-Fiky, E.; Patel, D.; Xing, Z.; Plant, D.V. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt. Express 2019, 27, 10456–10471. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 1st ed.; Wiley: New York, NY, USA, 2006; ISBN 978-0-470-11539-8. [Google Scholar]
- Komma, J.; Schwarz, C.; Hofmann, G.; Heinert, D.; Nawrodt, R. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 2012, 101, 041905. [Google Scholar] [CrossRef]
- Wilmart, Q.; Brision, S.; Hartmann, J.-M.; Myko, A.; Ribaud, K.; Petit-Etienne, C.; Youssef, L.; Fowler, D.; Charbonnier, B.; Sciancalepore, C.; et al. A Complete Si Photonics Platform Embedding Ultra-Low Loss Waveguides for O- and C-Band. J. Light. Technol. 2021, 39, 532–538. [Google Scholar] [CrossRef]
Parameter/ | N | M | R0 [μm] | dr [μm] |
---|---|---|---|---|
Design | ||||
Array #1 | 10 | 11 | 20 | 9 |
Array #2 | 20 | 41 | 60 | 9 |
Component | Central Coupler | Optical Antenna | Adiabatic Taper | Connecting Waveguide * |
---|---|---|---|---|
Loss [dB] | 1.8 | 0.4 | 0.2 | ~0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedikovič, D.; Liu, Q.; Sánchez-Postigo, A.; Atieh, A.; Smy, T.; Cheben, P.; Ye, W.N. Circular Optical Phased Array with Large Steering Range and High Resolution. Sensors 2022, 22, 6135. https://doi.org/10.3390/s22166135
Benedikovič D, Liu Q, Sánchez-Postigo A, Atieh A, Smy T, Cheben P, Ye WN. Circular Optical Phased Array with Large Steering Range and High Resolution. Sensors. 2022; 22(16):6135. https://doi.org/10.3390/s22166135
Chicago/Turabian StyleBenedikovič, Daniel, Qiankun Liu, Alejandro Sánchez-Postigo, Ahmad Atieh, Tom Smy, Pavel Cheben, and Winnie N. Ye. 2022. "Circular Optical Phased Array with Large Steering Range and High Resolution" Sensors 22, no. 16: 6135. https://doi.org/10.3390/s22166135
APA StyleBenedikovič, D., Liu, Q., Sánchez-Postigo, A., Atieh, A., Smy, T., Cheben, P., & Ye, W. N. (2022). Circular Optical Phased Array with Large Steering Range and High Resolution. Sensors, 22(16), 6135. https://doi.org/10.3390/s22166135