SWIPT-Pairing Mechanism for Channel-Aware Cooperative H-NOMA in 6G Terahertz Communications
Abstract
:1. Introduction
- (1)
- We designed a modified integrated (energy and spectral efficient) wireless communication system with powerful capabilities for the green communications era. It applies 6G candidate technologies to take full advantage of their characteristics for sufficient performance.
- (2)
- We utilized the practical application of hybrid-NOMA to the proposal for the utmost benefit of this scheme over single-carrier NOMA shortages.
- (3)
- We evaluated the best pairing strategy in H-NOMA to attain the best possible system performance.
- (4)
- We proposed a cost-effective simplified system, provided with a single input–single output high-directional antenna instead of other complexed schemes, to reduce computation and signal detection complexities in the receiver, maintaining sufficient SE, reducing power consumption, and increasing EE.
- (5)
- We investigated all the possible SWIPT pairs with the available (LOS) users to specify the best pair that provides the best performance.
- (6)
- We developed a dynamic mechanism to select the best SWIPT-pairing user out of all available users to guarantee fast and accurate dynamism.
- (7)
- We modified a scalable and upgradeable system while setting adjustable factors, i.e., coverage area, transmit power, carrier-frequency, bandwidth, and the simplest modulation.
2. Background
3. Related Works
4. Methodology
4.1. The Best Hybrid-NOMA Strategy
4.1.1. Near–Far Pairing (N–F)
4.1.2. Near–Near, Far–Far Pairing (N–N, F–F)
4.2. The Best SWIPT-Pairing Mechanism
4.3. Optimal SWIPT-Pairing
5. Implementation Environment
6. Results and Discussion
6.1. H-NOMA, NOMA, and OMA Performance Comparison
6.2. Proposal Simulation
6.2.1. OP versus Transmission Power
6.2.2. Instantaneous-Rate versus Channel-Realization
6.3. Optimal SWIPT-Pairing Mechanism
6.3.1. Average Rate versus Transmission Power
6.3.2. OP versus Transmission Power
6.3.3. Instantaneous Achievable Rate versus Channel Realization
6.4. System Numerical Analysis and Simulation
6.4.1. Sum Throughput versus Transmission Power
6.4.2. User OP versus Transmission Power
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oleiwi, H.W.; Al-Raweshidy, H. Cooperative SWIPT THz-NOMA/6Gperformance analysis. Electronics 2022, 11, 873. [Google Scholar] [CrossRef]
- Oleiwi, H.W.; Saeed, N.; Al-Raweshidy, H. Cooperative SWIPT MIMO-NOMA for reliable THz 6G communications. Network 2022, 2, 257–269. [Google Scholar] [CrossRef]
- Oleiwi, H.W.; Saeed, N.; Al-Raweshidy, H. A Cooperative SWIPT-Hybrid-NOMA pairing scheme considering SIC im-perfection for THz communications. In Proceedings of the IEEE 4th Global Power, Energy and Communication Conference (GPECOM), Cappadocia, Turkey, 14–17 June 2022. [Google Scholar]
- Han, S.; Xie, T.; Chih-Lin, I. Greener physical layer technologies for 6G mobile communications. IEEE Commun. Mag. 2021, 59, 68–74. [Google Scholar] [CrossRef]
- Jiang, W.; Han, B.; Habibie, M.A.; Schotten, H.D. The road towards 6G: A comprehensive survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366. [Google Scholar] [CrossRef]
- Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Abdulhussain, S.H.; Eissa, M.R.; Al-Baidhani, A.; Noordin, N.K.; Sait, S.M.; Al-Utaibi, K.A.; Hashim, F. 6G Wireless communications networks: A comprehensive survey. IEEE Access 2021, 9, 148191–148243. [Google Scholar] [CrossRef]
- De Alwis, C.; Kalla, A.; Pham, Q.V.; Kumar, P.; Dev, K.; Hwang, W.J.; Liyanage, M. Survey on 6G frontiers: Trends, applications, requirements, technologies and future Research. IEEE Open J. Commun. Soc. 2021, 2, 836–886. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Kak, A.; Nie, S. 6G and Beyond: The future of wireless communications systems. IEEE Access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, F.; Zhu, G.; Wang, X.; Jiao, Y. Dynamic power optimization of pilot and data for downlink OFDMA systems. IEEE J. Commun. Netw. 2021, 23, 250–259. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6g and beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Chatzimisios, P.; Soldani, D.; Jamalipour, A.; Manzalini, A.; Das, S.K. Special issue on 6G wireless systems. IEEE J. Commun. Netw. 2020, 22, 440–443. [Google Scholar] [CrossRef]
- Darsena, D.; Gelli, G.; Verde, F. Design and performance analysis of multiple-relay cooperative MIMO networks. IEEE J. Commun. Netw. 2019, 21, 25–33. [Google Scholar] [CrossRef]
- Sun, Y.; Cyr, B. Sampling for data freshness optimization: Non-linear age functions. J. Commun. Netw. 2019, 21, 204–219. [Google Scholar] [CrossRef]
- Gür, G. Expansive networks: Exploiting spectrum sharing for capacity boost and 6G vision. IEEE J. Commun. Netw. 2020, 22, 444–454. [Google Scholar] [CrossRef]
- Elayan, H.; Amin, O.; Shihada, B.; Shubair, R.M.; Alouini, M.S. Terahertz band: The last piece of rf spectrum puzzle for communication systems. IEEE Open J. Commun. Soc. 2020, 1, 1–32. [Google Scholar] [CrossRef]
- Sarieddeen, H.; Alouini, M.S.; Al-Naffouri, T.Y. An overview of signal processing techniques for terahertz communications. Proc. IEEE 2021, 10, 1628–1665. [Google Scholar] [CrossRef]
- Tataria, H.; Shafi, M.; Molisch, A.F.; Dohler, M.; Sjoland, H.; Tufvesson, F. 6G Wireless systems: Vision, requirements, challenges, insights, and opportunities. Proc. IEEE 2021, 109, 1166–1199. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.; Schober, R. Uplink and downlink MIMO-NOMA with simultaneous triangularization. IEEE Trans. Wirel. Commun. 2021, 20, 3381–3396. [Google Scholar] [CrossRef]
- Liu, Y.; Yi, W.; Ding, Z.; Liu, X.; Dobre, O.; Al-Dhahir, N. Evolution of NOMA toward next generation multiple access (NGMA) for 6G. Proc. IEEE J. Sel. Areas Commun. 2022, 40, 1037–1071. [Google Scholar] [CrossRef]
- Maraqa, O.; Rajasekaran, A.S.; Al-Ahmadi, S.; Yanikomeroglu, H.; Sait, S.M. A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks. IEEE Commun. Surv. Tutor. 2020, 22, 2192–2235. [Google Scholar] [CrossRef]
- Liaqat, M.; Noordin, K.A.; Abdul Latef, T.; Dimyati, K. Power-domain non orthogonal multiple access (PD-NOMA) in cooperative networks: An overview. Wirel. Netw. 2020, 26, 181–203. [Google Scholar] [CrossRef]
- Ng, D.W.K.; Duong, T.Q.; Zhong, C.; Schober, R. On the Application of SWIPT in NOMA Networks. In Wireless Information and Power Transfer: Theory and Practice; Wiley Telecom: Hoboken, NJ, USA, 2018; Chapter 6; pp. 99–120. [Google Scholar]
- Bjornson, E.; Ozdogan, O.; Larsson, E.G. Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying? IEEE Wirel. Commun. Lett. 2020, 9, 244–248. [Google Scholar] [CrossRef]
- Jaiswal, A.; Kumar, S.; Kaiwartya, O.; Kumar, N.; Song, H.; Lloret, J. Secrecy Rate Maximization in Virtual-MIMO Enabled SWIPT for 5G Centric IoT Applications. IEEE Syst. J. 2021, 15, 2810–2821. [Google Scholar] [CrossRef]
- Tri Nhu, D.; Beongku, A. Optimal Sum-Throughput Analysis for Downlink Cooperative SWIPT NOMA Systems. In Proceedings of the IEEE 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), Ho Chi Minh City, Vietnam, 29–31 January 2018; pp. 85–90. [Google Scholar]
- Zhang, H.; Zhang, H.; Liu, W.; Long, K.; Dong, J.; Leung, V.C.M. Energy efficient user clustering, hybrid precoding and power optimization in terahertz MIMO-NOMA systems. Proc. IEEE J. Sel. Areas Commun. 2020, 38, 2074–2085. [Google Scholar] [CrossRef]
- Saad, M.; Al Akkad, N.; Hijazi, H.; Al Ghouwayel, A.C.; Bader, F.; Palicot, J. Novel MIMO technique for wireless terabits systems in Sub-THz Band. IEEE Open J. Veh. Technol. 2021, 2, 125–139. [Google Scholar] [CrossRef]
- Elkharbotly, O.; Maher, E.; El-Mahdy, A.; Dressler, F. Optimal power allocation in cooperative MIMO-NOMA with FD/HD relaying in THz communications. In Proceedings of the 9th IFIP International Conference on Performance Evaluation and Modeling in Wireless Networks (PEMWN), Berlin, Germany, 1–3 December 2020. [Google Scholar]
- Oleiwi, H.W.; Al-Taie, H.L.; Mhawi, D.N.; Saeed, N. Comparative investigation on different QoS mechanisms in multihomed networks. Iraqi J. Ind. Res. 2022, 9, 1–10. [Google Scholar] [CrossRef]
- Oleiwi, H.W.; Saeed, N.; Al-Taie, H.L.; Mhawi, D.N. An enhanced interface selectivity technique to improve the QoS for the multihomed node. Eng. Technol. J. 2022, 40, 101–109. [Google Scholar] [CrossRef]
- IEEE Standard for High Data Rate Wireless Multi-Media Networks–Amendment 2: 100 Gb/s Wireless Switched Point-to-Point Physical Layer; IEEE: Piscataway, NJ, USA, 2017; ISBN 9781504442466.
- Petrov, V.; Kurner, T.; Hosako, I. IEEE 802.15.3d: First standardization efforts for Sub-Terahertz band communications toward 6G. IEEE Commun. Mag. 2020, 58, 28–33. [Google Scholar] [CrossRef]
Symbols | Description |
---|---|
AWGN | Additive white Gaussian noise |
AWGN variance | |
Probability density function | |
P | Transmit power |
αn | Power coefficient of the near user |
αf | Power coefficient of the far user |
NU | Near user |
FU | Far user |
Signal of the near user | |
Signal of the far user | |
R | Relaying user |
H | A vector of Rayleigh channels for k-number of users |
K | Constant |
N–N | Near–near |
F–F | Far–far |
h2, h3, and h4 | Rayleigh fading channels of user2, user3, and user4 |
A | Number of antennas |
G | Antenna-gain |
η | THz source-to-destination losses |
f | Frequency |
d | Source-to-destination distance |
a(f) | Absorption coefficient |
c | Speed of light |
hsn | BS-to-NU Rayleigh channel (mean = 0, variance = dsn−η) |
dsn | BS-to-NU transmission distance |
wn | AWGN |
weh | Thermal noise (zero mean, variance = ) |
ζ | Electronic circuits’ EH efficiency |
hnf | NU–FU Rayleigh fading channel |
δ | A very small value of |
ψ | The energy harvesting power fraction |
Symbol | Parameter | V.A | V.B |
---|---|---|---|
f | Frequency | 311.04 GHz | 311.04 GHz |
BW | Bandwidth | 12.96 GHz | 12.96 GHz |
P | Transmission power | 20–40 dBm | 30 dBm |
d | Transmission distance | U1, U2, U3, U4 = (10, 9, 4, 3) m | |
αn | NU power coefficient | 0.2 of total power | |
αf | FU power coefficient | 0.8 of total power | |
G | Antenna gain | 25 dB | |
eta | Path loss exponent | 4 | |
Targeted data rate | 1 Gbps | ||
EH conversion efficiency | 0.7 |
Users/Time | Multiple Access Technique | Strategy | Time Slots | |||
---|---|---|---|---|---|---|
U1, U2, U3, and U4 | TDMA | U1 | U2 | U3 | U4 | 4 |
NOMA | U1, U2, U3, and U4 | 1 | ||||
NOMA\TDMA | First Pair | Second Pair | 2 | |||
Time | 4 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleiwi, H.W.; Al-Raweshidy, H. SWIPT-Pairing Mechanism for Channel-Aware Cooperative H-NOMA in 6G Terahertz Communications. Sensors 2022, 22, 6200. https://doi.org/10.3390/s22166200
Oleiwi HW, Al-Raweshidy H. SWIPT-Pairing Mechanism for Channel-Aware Cooperative H-NOMA in 6G Terahertz Communications. Sensors. 2022; 22(16):6200. https://doi.org/10.3390/s22166200
Chicago/Turabian StyleOleiwi, Haider W., and Hamed Al-Raweshidy. 2022. "SWIPT-Pairing Mechanism for Channel-Aware Cooperative H-NOMA in 6G Terahertz Communications" Sensors 22, no. 16: 6200. https://doi.org/10.3390/s22166200
APA StyleOleiwi, H. W., & Al-Raweshidy, H. (2022). SWIPT-Pairing Mechanism for Channel-Aware Cooperative H-NOMA in 6G Terahertz Communications. Sensors, 22(16), 6200. https://doi.org/10.3390/s22166200