Facile Conversion of the Quinone-Semicarbazone Chromophore of Naftazone into a Fluorescent Quinol-Semicarbazide: Kinetic Study and Analysis of Naftazone in Pharmaceuticals and Human Serum
Abstract
:1. Introduction
2. Experimental
2.1. Apparatus
2.2. Materials and Solutions
2.3. Procedure for the Calibration Curve
2.4. Procedure for Determination of NFZ in Tablets
2.5. Extraction of Naftazone from Human Serum Samples Using Salting-Out Liquid–Liquid Extraction (SALLE)
2.6. Validation Procedure for the Determination of Naftazone in Human Serum
2.7. Procedure for Determination of the Order of the Reaction
2.8. Procedure for Calculation of the Rate Constant, Arrhenius Equation, and Activation Energy of the Reaction
3. Results and Discussion
3.1. The Idea of the Fluorogenic Assay Reaction and Fluorescence Features
3.2. Optimization of the Reaction Conditions
3.3. Solvent Dependency of the Reaction Product Fluorescence
3.4. Analytical Method Validation for the Standard Analysis
3.5. Pharmaceutical Application
3.6. Application and Validation of the Developed Method for the Analysis of Naftazone in Human Serum
3.7. Results of the Kinetic Study of NFZ Reaction with Potassium Borohydride
3.8. Assessment of Method Greenness
3.9. Comparison of the Developed Method with the Published Methods for NFZ
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sweetman, S.C. Martindale: The Complete Drug Reference, 36th ed.; The Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- Acton, Q.A. Parkinson’s Disease: New Insights for the Healthcare Professional; ScholarlyEditions: Atlanta, GA, USA, 2013. [Google Scholar]
- Ibrahim, F.A.; El-Enany, N.M.; El-Shaheny, R.N.; Mikhail, I.E. Spectroscopic Studies on Naftazone and Its Metal Complexes with Analytical Applications for Quality Control of Tablets. Anal. Methods 2015, 7, 5954–5961. [Google Scholar] [CrossRef]
- Khodari, M.; Vire, J.C.; Patriarchs, G.J.; Ghandour, M.A. Cathodic and Adsorptive Stripping Votammetry of Naftazone. Anal. Lett. 1990, 23, 1873–1885. [Google Scholar] [CrossRef]
- Viré, J.-C.; Patriarche, G.J.; Christian, G.D. Electrochemical Study of 1,2-Naphthoquinone-4-Sulphonate and 1,2-Naphthoquinone Semicarbazone. Fresenius Z. Anal. Chem. 1979, 299, 197–201. [Google Scholar] [CrossRef]
- Maali, N.A.; Vire, J.-C.; Patriarche, G.J.; Ghandour, M.A. Polarographic Study of Copper (II) Complexes with Some Naphthoquinonic Derivatives. Anal. Lett. 1990, 23, 529–542. [Google Scholar] [CrossRef]
- Bressolle, F.; Bres, J.; Brun, S.; Rechencq, E. Quantitative determination of drugs by in situ spectrophotometry of chromatograms for pharmacokinetic studies. I. Sulpiride and other benzamides, vincamine, naftazone (author’s transl). J. Chromatogr. 1979, 174, 421–433. [Google Scholar] [CrossRef]
- Walash, M.I.; Belal, F.; El-Enany, N.; Eid, M.; El-Shaheny, R.N. Stability-Indicating HPLC Method for Determination of Naftazone in Tablets. Application to Degradation Kinetics and Content Uniformity Testing. J. Chromatogr. Sci. 2011, 49, 495–501. [Google Scholar] [CrossRef]
- Park, J.-A.; Abd El-Aty, A.M.; Zheng, W.; Kim, S.-K.; Cho, S.-H.; Choi, J.-M.; Hacimuftuoglu, A.; Jeong, J.H.; Wang, J.; Shim, J.-H.; et al. Simultaneous Determination of Clanobutin, Dichlorvos, and Naftazone in Pork, Beef, Chicken, Milk, and Egg Using Liquid Chromatography-Tandem Mass Spectrometry. Food Chem. 2018, 252, 40–48. [Google Scholar] [CrossRef]
- El-Shaheny, R.; Al-Khateeb, L.A.; El Hamd, M.A.; El-Maghrabey, M. Correction Pen as a Hydrophobic/Lipophobic Barrier Plotter Integrated with Paper-Based Chips and a Mini UV-Torch to Implement All-in-One Device for Determination of Carbazochrome. Anal. Chim. Acta 2021, 1172, 338684. [Google Scholar] [CrossRef]
- Mantoanelli, J.O.F.; Gonçalves, L.M.; Pereira, E.A. Dansyl Chloride as a Derivatizing Agent for the Analysis of Biogenic Amines by CZE-UV. Chromatographia 2020, 83, 767–778. [Google Scholar] [CrossRef]
- Walash, M.I.; Belal, F.; El-Enany, N.; El-Maghrabey, M.H. Simple and Sensitive Spectrofluorimetric Method for the Determination of Pregabalin in Capsules through Derivatization with Fluorescamine. Luminescence 2011, 26, 342–348. [Google Scholar] [CrossRef]
- Ibrahim, F.; El-Enany, N.; El-Shaheny, R.N.; Mikhail, I.E. Validated Spectrofluorimetric and Spectrophotometric Methods for the Determination of Brimonidine Tartrate in Ophthalmic Solutions via Derivatization with NBD-Cl. Application to Stability Study. Luminescence 2015, 30, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Walash, M.I.; Belal, F.; El-Enany, N.; El-Maghrabey, M.H. Spectrofluorimetric Determination of Oseltamivir Phosphate through Derivatization with O-Phthalaldehyde. Application to Pharmaceutical Preparations with a Preliminary Study on Spiked Plasma Samples. Luminescence 2012, 27, 511–518. [Google Scholar] [CrossRef] [PubMed]
- El-Maghrabey, M.; Suzuki, H.; Kishikawa, N.; Kuroda, N. A Sensitive Chemiluminescence Detection Approach for Determination of 2,4-Dinitrophenylhydrazine Derivatized Aldehydes Using Online UV Irradiation–Luminol CL Reaction. Application to the HPLC Analysis of Aldehydes in Oil Samples. Talanta 2021, 233, 122522. [Google Scholar] [CrossRef] [PubMed]
- Tobiszewski, M.; Marć, M.; Gałuszka, A.; Namiesnik, J. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules 2015, 20, 10928–10946. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services-Food and Drug Administration Bioanalytical Method Validation Guidance for Industry. Available online: https://www.fda.gov/downloads/drugs/guidances/ucm070107.Pdf (accessed on 28 July 2020).
- Upadhyay, S.K. Chemical Kinetics and Reaction Dynamics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Ohannesian, L.; Streeter, A.J. Handbook of Pharmaceutical Analysis; Marcel Dekker, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Mahmoud, A.M.; Khalil, N.Y.; Darwish, I.A.; Aboul-Fadl, T. Selective Spectrophotometric and Spectrofluorometric Methods for the Determination of Amantadine Hydrochloride in Capsules and Plasma via Derivatization with 1,2-Naphthoquinone-4-Sulphonate. Int. J. Anal. Chem. 2009, 2009, 810104. [Google Scholar] [CrossRef] [PubMed]
- Kalpana, G.L.; Ravisankar, P.; Rao, G.D.; Raju, M.B. A Novel Spectrofluorimetric Method for the Determination of Amisulpride in Bulk and Pharmaceutical Formulation. Der Pharm. Lett. 2016, 8, 86–95. [Google Scholar]
- Ma, J.; Del Vecchio, R.; Golanoski, K.S.; Boyle, E.S.; Blough, N.V. Optical Properties of Humic Substances and CDOM: Effects of Borohydride Reduction. Environ. Sci. Technol. 2010, 44, 5395–5402. [Google Scholar] [CrossRef]
- Buna, M.; Aaron, J.-J.; Prognon, P.; Mahuzier, G. Effects of PH and Solvent on the Fluorescence Properties of Biomedically Important Benzamides. Application to Determination in Drugs and in Human Urine. Analyst 1996, 121, 1551. [Google Scholar] [CrossRef]
- Xu, Y.; Wei, Y. CeCl3-Catalyzed Reduction of Methyl Esters of Carboxylic Acids to Corresponding Alcohols with Sodium Borohydride. Synth. Commun. 2010, 40, 3423–3429. [Google Scholar] [CrossRef]
- Kuehne, M.E.; Shannon, P.J. Reduction of Amides and Lactams to Amines by Reactions with Phosphorus Oxychloride and Sodium Borohydride. J. Org. Chem. 1977, 42, 2082–2087. [Google Scholar] [CrossRef]
- Caddick, S.; Judd, D.B.; Lewis, A.K.K.; Reich, M.T.; Williams, M.R. A Generic Approach for the Catalytic Reduction of Nitriles. Tetrahedron 2003, 59, 5417–5423. [Google Scholar] [CrossRef]
- Ward, D.E.; Rhee, C.K. Chemoselective Reductions with Sodium Borohydride. Aldehydes vs. Ketones. Synth. Commun. 1988, 18, 1927–1933. [Google Scholar] [CrossRef]
- Isac-García, J.; Dobado, J.A.; Calvo-Flores, F.G.; Martínez-García, H. Green Chemistry Experiments. In Experimental Organic Chemistry: Laboratory Manual; Elsevier: Amsterdam, The Netherlands, 2016; pp. 417–484. [Google Scholar]
- Smallwood, I.M. Handbook of Organic Solvent Properties; Elsevier: Amsterdam, The Netherlands, 1996; ISBN 9780080523781. [Google Scholar]
- Henson, R.M.C.; Wyatt, P.A.H. Fluorescence and Flash Photolysis Comparison of 1-Hydroxynaphthalene-2-Sulphonate and 1-Hydroxynaphthalene-4-Sulphonate Ions in Aqueous Solutions of Various Acidities. J. Chem. Soc. Faraday Trans. 1975, 71, 669. [Google Scholar] [CrossRef]
- Agmon, N.; Huppert, D.; Masad, A.; Pines, E. Excited-State Proton Transfer to Methanol-Water Mixtures. J. Phys. Chem. 1991, 95, 10407–10413. [Google Scholar] [CrossRef]
- Pappayee, N.; Mishra, A.K. Excited State Proton Transfer of Some Substituted Naphthols in Liposomes. Indian J. Chem. 2000, 39A, 964–973. [Google Scholar]
- Bryce-Smith, D.; Gilbert, A.; Cox, A. Photo-Reduction and -Oxidation. In Photochemistry; Bryce-Smith, D., Gilbert, A., Eds.; Royal Society of Chemistry: Cambridge, UK, 1989; pp. 344–365. [Google Scholar]
- Loutfy, R.O.; Yip, R.W.; Dogra, S.K. The Triplet State of Ketones in Solution: Quenching of Triplet Acetone by Olefins. Tetrahedron Lett. 1977, 18, 2843–2846. [Google Scholar] [CrossRef]
- Williams, R.T.; Bridges, J.W. Fluorescence of Solutions: A Review. J. Clin. Pathol. 1964, 17, 371–394. [Google Scholar] [CrossRef] [PubMed]
- ICH Expert Working Group. Validation of Analytical Procedures: Text and Methodology, Q2(R1). In Proceedings of the International Conference on Harmoanization, Geneva, Switzerland, 6 November 2005. [Google Scholar]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 6th ed.; Pearson Education Limited: Harlow, UK, 2010. [Google Scholar]
- Zhang, J.; Wu, H.; Kim, E.; El-Shourbagy, T.A. Salting-out Assisted Liquid/Liquid Extraction with Acetonitrile: A New High Throughput Sample Preparation Technique for Good Laboratory Practice Bioanalysis Using Liquid Chromatography-Mass Spectrometry. Biomed. Chromatogr. 2009, 23, 419–425. [Google Scholar] [CrossRef] [PubMed]
- El-Maghrabey, M.; Kishikawa, N.; Kuroda, N. 9,10-Phenanthrenequinone as a Mass-Tagging Reagent for Ultra-Sensitive Liquid Chromatography-Tandem Mass Spectrometry Assay of Aliphatic Aldehydes in Human Serum. J. Chromatogr. A 2016, 1462, 80–89. [Google Scholar] [CrossRef]
- El-Maghrabey, M.; Kishikawa, N.; Kuroda, N. Novel Isotope-Coded Derivatization Method for Aldehydes Using 14 N/15 N-Ammonium Acetate and 9,10-Phenanthrenequinone. Anal. Chem. 2018, 90, 13867–13875. [Google Scholar] [CrossRef]
- Iben Ayad, A.; Luart, D.; Ould Dris, A.; Guénin, E. Kinetic Analysis of 4-Nitrophenol Reduction by “Water-Soluble” Palladium Nanoparticles. Nanomaterials 2020, 10, 1169. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.T. Green Chemistry and the Role of Analytical Methodology Development. Crit. Rev. Anal. Chem. 1999, 29, 167–175. [Google Scholar] [CrossRef]
- El-Shaheny, R.N.; El-Maghrabey, M.H.; Belal, F.F. Micellar Liquid Chromatography from Green Analysis Perspective. Open Chem. 2015, 13, 877–892. [Google Scholar] [CrossRef]
- El-Shaheny, R.N.; El-Enany, N.M.; Belal, F.F. A Green HPLC Method for the Analysis and Stability Study of Flavoxate HCl Using Micellar Eluent. Anal. Methods 2014, 6, 1001–1010. [Google Scholar] [CrossRef]
- El-Shaheny, R.N. Stability-Indicating Micellar LC Methods with Time-Programmed UV Detection for Determination of Three Oxicams in Pharmaceuticals with Direct Injection of Gel and Suppositories. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 163–171. [Google Scholar] [CrossRef]
- Ibrahim, F.A.; El-Enany, N.; El-Shaheny, R.N.; Mikhail, I.E. Simultaneous Determination of Desloratadine and Montelukast Sodium Using Second-Derivative Synchronous Fluorescence Spectrometry Enhanced by an Organized Medium with Applications to Tablets and Human Plasma. Luminescence 2015, 30, 485–494. [Google Scholar] [CrossRef]
- Ahmed, A.B.; Gamal, M.; Naguib, I.A.; Ali, H.M.; Abdallah, F.F. Environmental Impact of the Reported Chromatographic Methods for the Determination of the First FDA-Approved Therapy for COVID-19 Patients, Remdesivir: A Comparative Study. Microchem. J. 2022, 176, 107242. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical Greenness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency, Persistent Bioaccumulative Toxic (PBT) Chemicals Covered by the TRI Program. Available online: https://www.epa.gov/toxics-release-inventory-tri-program/persistent-bioaccumulative-toxic-pbt-chemicals-covered-tri (accessed on 20 July 2018).
- United States Environmental Protection Agency. Hazardous Waste Listings, First Update. Available online: https://www.epa.gov/sites/production/files/2016-01/documents/hw_listref_sep2012.pdf (accessed on 20 July 2020).
- Tobiszewski, M. Metrics for Green Analytical Chemistry. Anal. Methods 2016, 8, 2993–2999. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for Assessing the Greenness of Analytical Procedures. Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
λexcitation/λemmision (nm) | 295/350 |
Range (ng/mL) | 10.0–500 |
Limit of detection (LOD) (ng/mL) | 2.9 |
Limit of quantification (LOQ) (ng/mL) | 9.0 |
r | 0.9995 |
Slope (b) | 1.15 |
Intercept (a) | 4.75 |
Residuals Standard deviation (Sy/x) | 2.30 |
Intercept standard deviation (Sa) | 6.97 |
Slope standard deviation (Sb) | 0.01 |
%RSD | 0.67 |
%Error | 0.46 |
Parameters | Proposed Method | Comparison Method [8] | |||
---|---|---|---|---|---|
Conc. Taken (ng/mL) | Conc. Found (µg/mL) | % Found a | Conc. Taken (ng/mL) | % Found a | |
10 | 9.934 | 99.3 | 500 | 100.0 | |
50 | 50.386 | 100.8 | 1000 | 100.8 | |
100 | 101.87 | 101.9 | 2000 | 99.7 | |
200 | 198.008 | 99.0 | |||
400 | 397.115 | 99.3 | |||
500 | 502.710 | 100.5 | |||
Mean ± SD | 100.1 ± 1.1 | 100.2±0.5 | |||
t | 0.05 (2.36) b | ||||
F | 4.36 (19.30) b |
Parameter | Intra-Day Precision | Inter-Day Precision | ||||
---|---|---|---|---|---|---|
Conc. (ng/mL) | Conc. (ng/mL) | |||||
50 | 200 | 500 | 50 | 200 | 500 | |
% Found | 98.7 | 101.1 | 99.2 | 100.4 | 100.3 | 99.4 |
100.8 | 99.3 | 100.4 | 100.8 | 100.6 | 99.0 | |
101.8 | 100.6 | 98.4 | 98.7 | 101.9 | 101.3 | |
Mean | 100.4 | 100.3 | 99.4 | 100.0 | 100.9 | 99.9 |
% RSD | 1.6 | 1.0 | 1.0 | 1.1 | 0.8 | 1.2 |
% Error | 0.9 | 0.6 | 0.6 | 0.7 | 0.5 | 0.7 |
Parameters | Proposed Method | Comparison Method [8] | |||
---|---|---|---|---|---|
Conc. Taken (ng/mL) | Conc. Found (ng/mL) | % Found a | Conc. Taken (ng/mL) | % Found a | |
50 | 50.91 | 101.82 | 500 | 99.8 | |
200 | 200.64 | 100.32 | 1000 | 98.9 | |
500 | 494.3 | 98.86 | 2000 | 100.4 | |
Mean ± SD | 100.33 ± 1.48 | 99.73 ± 0.80 | |||
t | 0.62 (2.78) b | ||||
F | 3.41 (19.00) b |
Spiked Level (ng/mL) (n = 3) | Accuracy (% Found) | Precision RSD (%) |
---|---|---|
10 (LOQ) | 11.8 | 12.5 |
50 | −10.7 | 2.6 |
100 | 1.7 | 1.6 |
200 | −3.3 | 7.2 |
500 | 0.6 | 0.6 |
Spiked Level (ng/mL) | Recovery (% Found) | Precision RSD (%) |
---|---|---|
10 (LOQ) | 99.4 | 6.8 |
50 | 92.3 | 2.2 |
100 | 94.9 | 3.0 |
200 | 106.5 | 3.8 |
500 | 99.3 | 1.0 |
Reagent (Volume, mL) | Number of Pictograms | Signal Word | Penalty Points |
---|---|---|---|
Potassium borohydride | 3 | Danger | 6 |
Acetonitrile | 2 | Danger | 4 |
2-Propanol | 2 | Danger | 4 |
Methanol | 3 | Danger | 6 |
Instruments | |||
Spectrofluorimetry | 0 | ||
Heater | 2 | ||
Occupational hazard | 0 | ||
Waste | 2 | ||
Penalty points | Σ24 | ||
Score | 76 (excellent green analysis) |
Method | Conditions | Sensitivity (LOD) (ng/mL) | Ref. |
---|---|---|---|
Spectrophotometry |
| 70 80 210 450 270 | [3] |
Cathodic stripping voltammetry | 0.05 M NaOH | 1.1 | [4] |
Polarography | pH 7.0 | 11 | [5] |
Differential pulse polarography | Complexation with Cu(II) at pH 5.0 or 7.4 | N/A | [6] |
TLC | Spraying the TLC plates sprayed with lead acetate followed by simultaneous reflectance and transmittance measurements at 520 nm | 10 | [7] |
HPLC-UV detection | Methanol:0.02 M NaH2PO4 (60:40, v/v) with pH 6.0 as a mobile phase and phenyl column. | 32 | [8] |
LC-MS/MS | Gradient elution of two mobile phases: 0.1% formic acid-10 mM ammonium formate (A) and acetonitrile (B) and C18 column | 0.1 | [9] |
Spectrofluorometry | Potassium borohydride/80 °C/60 min | 2.8 | Present method |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamal, M.; Ali, H.M.; El-Shaheny, R.; Naguib, I.A.; Alsalahat, I.; El-Maghrabey, M. Facile Conversion of the Quinone-Semicarbazone Chromophore of Naftazone into a Fluorescent Quinol-Semicarbazide: Kinetic Study and Analysis of Naftazone in Pharmaceuticals and Human Serum. Sensors 2022, 22, 6205. https://doi.org/10.3390/s22166205
Gamal M, Ali HM, El-Shaheny R, Naguib IA, Alsalahat I, El-Maghrabey M. Facile Conversion of the Quinone-Semicarbazone Chromophore of Naftazone into a Fluorescent Quinol-Semicarbazide: Kinetic Study and Analysis of Naftazone in Pharmaceuticals and Human Serum. Sensors. 2022; 22(16):6205. https://doi.org/10.3390/s22166205
Chicago/Turabian StyleGamal, Mohammed, Hazim M. Ali, Rania El-Shaheny, Ibrahim A. Naguib, Izzeddin Alsalahat, and Mahmoud El-Maghrabey. 2022. "Facile Conversion of the Quinone-Semicarbazone Chromophore of Naftazone into a Fluorescent Quinol-Semicarbazide: Kinetic Study and Analysis of Naftazone in Pharmaceuticals and Human Serum" Sensors 22, no. 16: 6205. https://doi.org/10.3390/s22166205
APA StyleGamal, M., Ali, H. M., El-Shaheny, R., Naguib, I. A., Alsalahat, I., & El-Maghrabey, M. (2022). Facile Conversion of the Quinone-Semicarbazone Chromophore of Naftazone into a Fluorescent Quinol-Semicarbazide: Kinetic Study and Analysis of Naftazone in Pharmaceuticals and Human Serum. Sensors, 22(16), 6205. https://doi.org/10.3390/s22166205