Antenna Excitation Optimization with Deep Learning for Microwave Breast Cancer Hyperthermia
Abstract
:1. Introduction
- We propose a CNN-based optimization of the antenna excitation parameters, which can be used as a hyperthermia treatment protocol. The proposed approach is applicable to any MH applicator since it learns directly from the generated dataset. The proposed approach is independent of system parameters such as operation frequency, antenna type, medium, or breast type; therefore, it enables the fair comparison of different MH applicator designs or operation parameters.
- The proposed optimization approach does not depend on the initial value assignment, which may yield a different local best each time it is performed.
- HTP requires multiple cost optimizations and the available optimization techniques solely rely on the given cost function. Combining different cost functions increases the complexity; therefore, most of the techniques do not take these multiple cost functions into consideration. The proposed method does not depend on a cost function, but on a simple mask that substitutes the desired heating map directly.
- We demonstrated the applicability of the proposed CNN-based method with two MH applicator configurations; that is, linear array and circular MH applicators. We used a heterogeneously dense realistic digital breast phantom, which is a difficult breast type to focus the energy. The successful focusing on this breast type demonstrates the capability of the proposed approach.
- CNN models are created offline, but they can be used online for different targets without any time or computational requirements.
- To the best of the author’s knowledge, this is the first paper to utilize deep learning for optimizing the antenna excitations for MH application.
- Finally, this work proposes a fast and simple data generation approach.
2. Overview of Hyperthermia Problem
2.1. Bio-Heat Equation
2.2. Optimization
3. Methods
3.1. Antenna Systems and Numerical Test Bed
3.2. Data Generation
3.3. CNN Models
3.4. Evaluation Metrics
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MH | Microwave Hyperthermia |
SAR | Specific Absorption Rate |
CNN | Convolutional Neural Network |
EM | Electromagnetic |
TR | Time Reversal |
CP | Convex Programming |
NP | Non-deterministic Polynomial-time |
PSO | Particle Swarm Optimization |
HP | Heating Potential |
ISM | Industrial Scientific Medical |
MRI | Magnetic Resonance Imaging |
FEM | Finite Element Method |
CPU | Central Processing Unit |
References
- Paulides, M.; Dobsicek Trefna, H.; Curto, S.; Rodrigues, D. Recent Technological Advancements In Radiofrequency- and Microwave-Mediated Hyperthermia For Enhancing Drug Delivery. Adv. Drug Deliv. Rev. 2020, 163–164, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Androulakis, I.; Mestrom, R.M.C.; Christianen, M.E.M.C.; Kolkman-Deurloo, I.-K.K.; van Rhoon, G.C. Simultaneous ThermoBrachytherapy: Electromagnetic Simulation Methods for Fast and Accurate Adaptive Treatment Planning. Sensors 2022, 22, 1328. [Google Scholar] [CrossRef] [PubMed]
- Sumser, K.; Bellizzi, G.G.; van Rhoon, G.C.; Paulides, M.M. The Potential of Adjusting Water Bolus Liquid Properties for Economic and Precise MR Thermometry Guided Radiofrequency Hyperthermia. Sensors 2020, 20, 2946. [Google Scholar] [CrossRef] [PubMed]
- Datta, N.; Ordóñez, S.; Gaipl, U.; Paulides, M.; Crezee, H.; Gellermann, J.; Marder, D.; Puric, E.; Bodis, S. Local Hyperthermia Combined With Radiotherapy And-/Or Chemotherapy: Recent Advances And Promises For The Future. Cancer Treat. Rev. 2015, 41, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, R.; Androulakis, I.; Martino, L.; Nadar, R.; van Rhoon, G.C.; Manzin, A. Design and Characterization of an RF Applicator for In Vitro Tests of Electromagnetic Hyperthermia. Sensors 2022, 22, 3610. [Google Scholar] [CrossRef] [PubMed]
- Altintas, G.; Akduman, I.; Janjic, A.; Yilmaz, T. A Novel Approach on Microwave Hyperthermia. Diagnostics 2021, 11, 493. [Google Scholar] [CrossRef]
- Fenn, A.J. An adaptive microwave phased array for targeted heating of deep tumours in intact breast: Animal study results. Int. J. Hyperth. 1999, 15, 45–61. [Google Scholar] [CrossRef]
- Fuchs, B.; Fuchs, J. Optimal Polarization Synthesis of Arbitrary Arrays With Focused Power Pattern. IEEE Trans. Antennas Propag. 2011, 59, 4512–4519. [Google Scholar] [CrossRef]
- Kosmas, P.; Zastrow, E.; Hagness, S.C.; Van Veen, B.D. A Computational Study of Time Reversal Techniques for Ultra-Wideband Microwave Hyperthermia Treatment of Breast Cancer. In Proceedings of the IEEE Statistical Signal Processing Workshop, Madison, WI, USA, 26–29 August 2007; pp. 312–316. [Google Scholar]
- Zastrow, E.; Hagness, S.; Van Veen, B.; Medow, J. Time-Multiplexed Beamforming For Noninvasive Microwave Hyperthermia Treatment. IEEE Trans. Biomed. Eng. 2011, 58, 1574–1584. [Google Scholar] [CrossRef] [Green Version]
- Stang, J.; Haynes, M.; Carson, P.; Moghaddam, M. A Preclinical System Prototype For Focused Microwave Thermal Therapy of The Breast. IEEE Trans. Biomed. Eng. 2012, 59, 2431–2438. [Google Scholar] [CrossRef] [Green Version]
- Trefna, H.; Togni, P.; Shiee, R.; Persson, M. Time-reversal system for microwave hyperthermia. In Proceedings of the 4th EuCAP, Barcelona, Spain, 12–16 April 2010; pp. 1–3. [Google Scholar]
- Yavuz, M.; Teixeira, F. Frequency Dispersion Compensation In Time Reversal Techniques For UWB Electromagnetic Waves. IEEE Geosci. Remote Sens. Lett. 2005, 2, 233–237. [Google Scholar] [CrossRef]
- Iero, D.; Isernia, T.; Morabito, A.; Catapano, I.; Crocco, L. Optimal Constrained Field Focusing for Hyperthermia Cancer Therapy: A Feasibility Assessment on Realistic Phantoms. Prog. Electromagn. Res. 2010, 102, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Isernia, T.; Panariallo, G. Optimal focusing of scalar fields with arbitrary upper bounds. In Proceedings of the Atti XI Riunione Nazionale di Elettromagnetismo (Italian), (XI RiNEm), Florence, Italy, 28 September–1 October 1998. [Google Scholar]
- Iero, D.; Isernia, T.; Crocco, L. Focusing Time Harmonic Scalar Fields In Non-Homogenous Lossy Media: Inverse Filter vs. Constrained Power Focusing Optimization. Appl. Phys. Lett. 2013, 103, 093702. [Google Scholar] [CrossRef]
- Iero, D.; Isernia, T.; Crocco, L. Focusing Time-Harmonic Scalar Fields In Complex Scenarios: A Comparison. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1029–1032. [Google Scholar] [CrossRef]
- Iero, D.; Crocco, L.; Isernia, T. Constrained Power Focusing Of Vector Fields: An Innovative Globally Optimal Strategy. J. Electromagn. Waves Appl. 2015, 29, 1708–1719. [Google Scholar] [CrossRef]
- Nguyen, P.; Abbosh, A.; Crozier, S. Microwave Hyperthermia For Breast Cancer Treatment Using Electromagnetic And Thermal Focusing Tested On Realistic Breast Models And Antenna Arrays. IEEE Trans. Antennas Propag. 2015, 63, 4426–4434. [Google Scholar] [CrossRef]
- Nguyen, P.; Abbosh, A.; Crozier, S. Three-Dimensional Microwave Hyperthermia For Breast Cancer Treatment in A Realistic Environment Using Particle Swarm Optimization. IEEE Trans. Biomed. Eng. 2017, 64, 1335–1344. [Google Scholar] [CrossRef]
- Nguyen, P.; Abbosh, A.; Crozier, S. 3-D Focused Microwave Hyperthermia For Breast Cancer Treatment With Experimental Validation. IEEE Trans. Antennas Propag. 2017, 65, 3489–3500. [Google Scholar] [CrossRef]
- Miao, S.; Wang, Z.; Liao, R. A CNN Regression Approach For Real-Time 2D/3D Registration. IEEE Trans. Med. Imaging 2016, 35, 1352–1363. [Google Scholar] [CrossRef]
- Oliveira, B.L.; Godinho, D.; O’Halloran, M.; Glavin, M.; Jones, E.; Conceição, R.C. Diagnosing Breast Cancer with Microwave Technology: Remaining Challenges and Potential Solutions with Machine Learning. Diagnostics 2018, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Audigier, C.; Ellens, N.; Boctor, E.M. Low-Cost Ultrasound Thermometry for HIFU Therapy Using CNN. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018; pp. 1–9. [Google Scholar]
- Yilmaz, T.; Akinci, M.N.; Girgin, E.; Önal, H. A Real-time Breast Hyperthermia Monitoring Scheme Based on Processing of Microwave Scattering Parameters with Deep Learning. TechRxiv, 2022, submitted.
- Kim, J.; Choi, S. A Deep Learning-Based Approach For Radiation Pattern Synthesis Of An Array Antenna. IEEE Access 2020, 8, 226059–226063. [Google Scholar] [CrossRef]
- Elbir, A.; Mishra, K. Joint Antenna Selection And Hybrid Beamformer Design Using Unquantized and Quantized Deep Learning Networks. IEEE Trans. Wirel. Commun. 2020, 19, 1677–1688. [Google Scholar] [CrossRef] [Green Version]
- Sallam, T.; Attiya, A. Convolutional Neural Network For 2D Adaptive Beamforming of Phased Array Antennas With Robustness To Array Imperfections. Int. J. Microw. Wirel. Technol. 2021, 13, 1096–1102. [Google Scholar] [CrossRef]
- Pennes, H. Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. J. Appl. Physiol. 1998, 85, 5–34. [Google Scholar] [CrossRef]
- Iero, D.; Crocco, L.; Isernia, T. Thermal And Microwave Constrained Focusing For Patient-Specific Breast Cancer Hyperthermia: A Robustness Assessment. IEEE Trans. Antennas Propag. 2014, 62, 814–821. [Google Scholar] [CrossRef]
- Canters, R.; Wust, P.; Bakker, J.; Van Rhoon, G. A Literature Survey On Indicators For Characterisation And Optimisation Of SAR Distributions In Deep Hyperthermia, A Plea For Standardisation. Int. J. Hyperth. 2009, 25, 593–608. [Google Scholar] [CrossRef]
- Zastrow, E.; Davis, S.; Lazebnik, M.; Kelcz, F.; Van Veen, B.; Hagness, S. Development Of Anatomically Realistic Numerical Breast Phantoms With Accurate Dielectric Properties For Modeling Microwave Interactions With The Human Breast. IEEE Trans. Biomed. Eng. 2008, 55, 2792–2800. [Google Scholar] [CrossRef] [Green Version]
- UWCEM-Phantom Repository. Available online: https://uwcem.ece.wisc.edu/phantomRepository.html (accessed on 10 November 2020).
- Lazebnik, M.; Popovic, D.; McCartney, L.; Watkins, C.; Lindstrom, M.; Harter, J.; Sewall, S.; Ogilvie, T.; Magliocco, A.; Breslin, T.; et al. A Large-Scale Study of The Ultrawideband Microwave Dielectric Properties Of Normal, Benign And Malignant Breast Tissues Obtained From Cancer Surgeries. Phys. Med. Biol. 2007, 52, 6093–6115. [Google Scholar] [CrossRef]
- Baskaran, D.; Arunachalam, K. Optimization techniques for hyperthermia treatment planning of breast cancer: A comparative study. In Proceedings of the IEEE MTT-S International Microwave and RF Conference (IMARC), Mumbai, India, 13–15 December 2019. [Google Scholar]
- Cappiello, G.; Mc Ginley, B.; Elahi, M.A. Differential Evolution Optimization of the SAR Distribution for Head and Neck Hyperthermia. IEEE Trans. Biomed. Eng. 2017, 64, 1875–1885. [Google Scholar] [CrossRef]
- Curto, S.; Garcia-Miquel, A.; Suh, M.; Vidal, N.; Lopez-Villegas, J.M.; Prakash, P. Design and characterisation of a phased antenna array for intact breast hyperthermia. Int. J. Hyperth. 2018, 34, 250–260. [Google Scholar] [CrossRef] [Green Version]
Study | Excitation | Antenna Array No. | |||||||
---|---|---|---|---|---|---|---|---|---|
Case | Parameters | 1 | 2 | 3 | 4 | % | % | (kWm) | |
A. CNN, | i. Phase (deg) | 0.00 | −48.46 | −178.10 | 133.44 | 8.42 | 10.78 | 1.28 | 14.89 |
without tumor | ii. Power (W) | 0.44 | 0.27 | 0.10 | 1.19 | 10.20 | 9.04 | 0.89 | 12.01 |
B. Lookup T. | i. Phase (deg) | 0.00 | −100.00 | 138.00 | 38.00 | 8.69 | 16.64 | 1.91 | 10.67 |
without tumor | ii. Power (W) | 0.20 | 0.00 | 0.33 | 1.47 | 10.56 | 12.71 | 1.20 | 12.06 |
C. CNN, | i. Phase (deg) | 0.00 | −43.10 | 135.73 | 92.63 | 12.63 | 11.44 | 0.91 | 22.72 |
with tumor | ii. Power (W) | 0.15 | 0.10 | 0.03 | 1.72 | 15.20 | 10.08 | 0.66 | 19.55 |
D. Lookup T. | i. Phase (deg) | 0.00 | −100.00 | 140.00 | 40.00 | 13.67 | 16.05 | 1.17 | 17.11 |
with tumor | ii. Power (W) | 0.33 | 0.0 | 0.0 | 1.67 | 15.10 | 10.24 | 0.68 | 18.62 |
Study | Excitation | Antenna No. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case | Parameters (deg, W) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
A. CNN | i. Phase | 0.00 | 98.57 | −15.76 | −114.3 | 170.8 | −74.84 | −40.73 | 34.11 | −62.28 | −96.39 | −108.0 | −11.60 |
without tumor 1 | ii. Power | 0.05 | 0.28 | 0.01 | 0.32 | 0.15 | 0.34 | 1.09 | 1.22 | 0.15 | 0.86 | 0.76 | 0.79 |
B. CNN | i. Phase | 0.00 | 126.03 | −61.00 | 172.97 | 97.59 | −75.38 | −94.68 | −19.31 | −59.18 | −39.88 | 96.33 | 136.21 |
without tumor 2 | ii. Power | 0.34 | 0.15 | 0.00 | 0.15 | 0.90 | 0.90 | 0.82 | 0.20 | 1.84 | 0.25 | 0.46 | 0.00 |
C. CNN | i. Phase | 0.00 | −31.33 | 138.53 | 169.86 | 52.28 | −117.6 | 0.42 | 118.0 | 29.80 | −88.19 | −157.3 | −69.07 |
with tumor 3 | ii. Power | 0.02 | 0.40 | 0.11 | 0.19 | 0.69 | 0.02 | 0.00 | 0.01 | 0.39 | 1.85 | 1.04 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yildiz, G.; Yasar, H.; Uslu, I.E.; Demirel, Y.; Akinci, M.N.; Yilmaz, T.; Akduman, I. Antenna Excitation Optimization with Deep Learning for Microwave Breast Cancer Hyperthermia. Sensors 2022, 22, 6343. https://doi.org/10.3390/s22176343
Yildiz G, Yasar H, Uslu IE, Demirel Y, Akinci MN, Yilmaz T, Akduman I. Antenna Excitation Optimization with Deep Learning for Microwave Breast Cancer Hyperthermia. Sensors. 2022; 22(17):6343. https://doi.org/10.3390/s22176343
Chicago/Turabian StyleYildiz, Gulsah, Halimcan Yasar, Ibrahim Enes Uslu, Yusuf Demirel, Mehmet Nuri Akinci, Tuba Yilmaz, and Ibrahim Akduman. 2022. "Antenna Excitation Optimization with Deep Learning for Microwave Breast Cancer Hyperthermia" Sensors 22, no. 17: 6343. https://doi.org/10.3390/s22176343
APA StyleYildiz, G., Yasar, H., Uslu, I. E., Demirel, Y., Akinci, M. N., Yilmaz, T., & Akduman, I. (2022). Antenna Excitation Optimization with Deep Learning for Microwave Breast Cancer Hyperthermia. Sensors, 22(17), 6343. https://doi.org/10.3390/s22176343