The Spectrum of Light Emitted by LED Using a CMOS Sensor-Based Digital Camera and Its Application
Abstract
:1. Introduction
2. Motivation
3. Experimental Setup
4. CMOS CFA-Based Digital Image Sensor
4.1. Bayer Color Filter Array (CFA) Image Sensor Technology
4.2. Hue–Wavelength Response Using CMOS
4.3. LED Image Analysis and H–W Response of CMOS Image Sensor
4.4. Fluor Emission Spectrum from a Color Image of Liquid Scintillator
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lightfool, P.K.; Kudryavtsev, V.A.; Spooner, N.J.C.; Liubarsky, I.; Luscher, R. Development of a gadolinium-loaded liquid scintillator for solar neutrino detection and neutron measurements. Nucl. Instrum. Methods Phys. Res. A 2004, 522, 439–446. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Liu, J.; Wang, Z.; Zhou, P.; Zhao, Y. A new gadolinium-loaded liquid scintillator for reactor neutrino detection. Nucl. Instrum. Methods Phys. Res. A 2008, 584, 238–243. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, J.; Yeo, I.S.; Choi, W.Q.; Ahn, J.; Choi, J.; Choi, S.; Choi, Y.; Jang, H.; Jang, J.; et al. Production and optical properties of Gd-loaded liquid scintillator for the RENO neutrino detector. Nucl. Instrum. Methods Phys. Res. A 2013, 707, 45–53. [Google Scholar] [CrossRef]
- International Commission on Illumination. Commission Internationale de l’éclairage … Huitième Session; Cambridge University Press: Cambridge, UK, 1932; Available online: https://www.worldcat.org/ko/title/commission-internationale-de-leclairage-huitieme-session-cambridge-septembre-1931/oclc/6990922 (accessed on 26 July 2022).
- Smith, T.; Guild, J. The C.I.E. colorimetric standards and their use. Trans. Opt. Soc. 1931, 33, 73–134. [Google Scholar] [CrossRef]
- CIE. Colorimetry; CIE 15:2018; CIE Central Bureau: Vienna, Austria, 2018. [Google Scholar]
- Smith, A.R. Color Gamut Transform Pairs. ACM SIGGRAPH Comput. Graph. 1978, 12, 12–19. [Google Scholar] [CrossRef]
- De Oliveira, H.J.S.; de Almeida, P.L., Jr.; Sampaio, B.A.; Fernandes, J.P.A.; Pessoa-Neto, O.D.; de Lima, E.A.; de Almeida, L.F. A handheld smartphone-controlled spectrophotometer based on hue to wavelength conversion for molecular absorption and emission measurements. Sens. Actuators B 2017, 238, 1084–1091. [Google Scholar] [CrossRef]
- McGregor, T.J.; Spence, D.J.; Coutts, D.W. Laser-based volumetric colour-coded three-dimensional particle velocimetry. Opt. Lasers Eng. 2007, 45, 882–889. [Google Scholar] [CrossRef]
- McGregor, T.J.; Jeffries, B.; Spence, D.J.; Coutts, D.W. Three Dimensional Particle Image Velocimetry using Colour Coded Light Sheets. In Proceedings of the Fourth Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Adelaide, Australia, 7–9 December 2005. [Google Scholar]
- Bruininks, B.; Juurlink Ludo, B.F. An Inexpensive 3D Printed Periscope-Type Smartphone-Based Spectrophotometer for Emission, Absorption, and Fluorescence Spectrometry. J. Chem. Educ. 2022, 99, 2168–2174. [Google Scholar] [CrossRef]
- Bornstein, M.H.; Weiskop, S. The Categories of Hue in Infancy. Science 1976, 191, 201–202. [Google Scholar] [CrossRef]
- Romney, A.K.; D’Andrade, R.G.; Indow, T. The distribution of response spectra in the lateral geniculate nucleus compared with reflectance spectra of Munsell color chips. Proc. Natl. Acad. Sci. USA 2005, 102, 9720–9725. [Google Scholar] [CrossRef] [Green Version]
- Conway, B.R.; Livingstone, M.S. A different point of hue. Proc. Natl. Acad. Sci. USA 2005, 102, 10761–70762. [Google Scholar] [CrossRef]
- Pridmore, R.W. Cone Photoreceptor Sensitivities and Unique Hue Chromatic Responses: Correlation and Causation Imply the Physiological Basis of Unique Hues. PLoS ONE 2013, 8, e77134. [Google Scholar]
- Deane, B.J. Hue Saturation and Lightness of Surface Colors with Chromatic Illumination. J. Opt. Soc. Am. 1940, 30, 2–32. [Google Scholar]
- Buck, C.; Gramlich, B.; Wagner, S. Light propagation and fluorescence quantum yields in liquid scintillators. J. Instrum. 2015, 10, P09007. [Google Scholar] [CrossRef]
- Motta, D.; Schönert, S. Optical properties of bialkali photocathodes. Nucl. Instrum. Methods Phys. Res. A 2005, 539, 217–235. [Google Scholar] [CrossRef]
- Teikari, P.; Najjar, R.P.; Malkki, H.; Knoblauch, K.; Dumortier, D.; Gronfier, C.; Cooper, H.M. An inexpensive Arduino-based LED stimulator system for vision research. J. Neurosci. Methods 2012, 211, 227–236. [Google Scholar] [CrossRef]
- Yeh, M.; Hans, S.; Beriguete, W.; Rosero, R.; Hu, L.; Hahn, R.L.; Diwan, M.V.; Jaffe, D.E.; Kettell, S.H.; Littenberg, L. A New Water-Based Liquid Scintillator and Potential Applications. Nucl. Instrum. Methods Phys. Res. A 2011, 660, 51–56. [Google Scholar] [CrossRef]
- Fischer, V.; Tiras, E. Water-based Liquid Scintillator Detector as a New Technology Testbed for Neutrino Studies in Turkey. Nucl. Instrum. Methods Phys. Res. A 2020, 969, 163931. [Google Scholar] [CrossRef]
- So, S.H.; Joo, K.K.; Kim, B.R.; Kim, B.C.; Kim, S.C. Development of a Liquid Scintillator Using Water for a Next Generation Neutrino Experiment. Adv. High Energy Phys. 2014, 2014, 327184. [Google Scholar] [CrossRef]
- Chu, Z.; Dreiss, C.A.; Feng, Y. Smart wormlike micelles. Chem. Soc. Rev. 2013, 42, 7174–7203. [Google Scholar] [CrossRef]
- Choi, J.W.; Choi, J.Y.; Joo, K.K.; Woo, H.J. Development of water-based liquid scintillator based on hydrophilic-lipophilic balance index. Phys. Scr. 2022, 97, 045304. [Google Scholar] [CrossRef]
- Ramanath, R.; Snyder, W.E.; Bilbro, G.L. Demosaicking methods for Bayer color arrays. J. Electron Imaging 2002, 11, 306–315. [Google Scholar] [CrossRef]
- Gunturk, B.K.; Glotzbach, J.; Altunbasak, Y.; Schafer, R.W.; Mersereau, R.M. Demosaicking: Color filter array interpolation. IEEE Signal Process Mag. 2005, 22, 44–54. [Google Scholar] [CrossRef]
- Fossum, E.R. CMOS image sensors: Electronic camera-on-a-chip. IEEE Trans. Electron Devices 1997, 44, 1689–1698. [Google Scholar] [CrossRef]
- Uwaerts, D.; Ogiers, W.; Seijnaeve, J.; Scheffer, D.; Dierickx, B.; Hermans, L.; Bogaerts, J. Recent developments in high-end CMOS image sensors. Int. Conf. Space Opt. 2017, 30, 10569. [Google Scholar]
- Fontaine, R. Recent innovations in CMOS image sensors. In Proceedings of the 2011 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, Saratoga Springs, NY, USA, 16–18 May 2011. [Google Scholar]
- Yokogawa, S. Nanophotonics contributions to state-of-the-art CMOS Image Sensors. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019. [Google Scholar]
- Yoshida, M.; Sonoda, T.; Nagahara, H.; Endo, K.; Sugiyama, Y.; Taniguchi, R.I. High-Speed Imaging Using CMOS Image Sensor with Quasi Pixel-Wise Exposure. IEEE Trans. Comput. Imaging 2020, 6, 463–476. [Google Scholar] [CrossRef]
- Szeliski, R. Computer Vision: Algorithms and Applications, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Maitre, H. From Photon to Pixel, 2nd ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Miler, H. Color filter array for CCD and CMOS image sensors using a chemically amplified, thermally cured, pre-dyed, positive tone photoresist for 365 nm lithography. Proc. SPIE 1999, 3678, 1083–1090. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-W.; Choi, J.-W.; Choi, J.-Y.; Joo, K.-K.; Kim, N.-R. The Spectrum of Light Emitted by LED Using a CMOS Sensor-Based Digital Camera and Its Application. Sensors 2022, 22, 6418. https://doi.org/10.3390/s22176418
Park H-W, Choi J-W, Choi J-Y, Joo K-K, Kim N-R. The Spectrum of Light Emitted by LED Using a CMOS Sensor-Based Digital Camera and Its Application. Sensors. 2022; 22(17):6418. https://doi.org/10.3390/s22176418
Chicago/Turabian StylePark, Hyeon-Woo, Ji-Won Choi, Ji-Young Choi, Kyung-Kwang Joo, and Na-Ri Kim. 2022. "The Spectrum of Light Emitted by LED Using a CMOS Sensor-Based Digital Camera and Its Application" Sensors 22, no. 17: 6418. https://doi.org/10.3390/s22176418
APA StylePark, H.-W., Choi, J.-W., Choi, J.-Y., Joo, K.-K., & Kim, N.-R. (2022). The Spectrum of Light Emitted by LED Using a CMOS Sensor-Based Digital Camera and Its Application. Sensors, 22(17), 6418. https://doi.org/10.3390/s22176418