Applied Assessment Method for Varus Thrust during Walking in Patients with Knee Osteoarthritis Using Acceleration Data Measured by an Inertial Measurement Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Gait Assessment
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA 2021, 325, 568–578. [Google Scholar] [CrossRef]
- Favre, J.; Jolles, B.M. Gait Analysis of Patients with Knee Osteoarthritis Highlights a Pathological Mechanical Pathway and Provides a Basis for Therapeutic Interventions. EFORT Open Rev. 2016, 1, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L. Osteoarthritis of the Knee. N. Engl. J. Med. 2021, 384, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Hayes, K.; Dunlop, D.; Hurwitz, D.; Song, J.; Cahue, S.; Genge, R.; Sharma, L. Thrust during Ambulation and the Progression of Knee Osteoarthritis. Arthritis Rheum. 2004, 50, 3897–3903. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Hochberg, M.; Song, J.; Dunlop, D.; Chmiel, J.S.; Nevitt, M.; Hayes, K.; Eaton, C.; Bathon, J.; Jackson, R.; et al. Frequency of Varus and Valgus Thrust and Factors Associated with Thrust Presence in Persons with or at Higher Risk of Developing Knee Osteoarthritis. Arthritis Rheum. 2010, 62, 1403–1411. [Google Scholar] [CrossRef]
- Chang, A.H.; Chmiel, J.S.; Moisio, K.C.; Almagor, O.; Zhang, Y.; Cahue, S.; Sharma, L. Varus Thrust and Knee Frontal Plane Dynamic Motion in Persons with Knee Osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1668–1673. [Google Scholar] [CrossRef]
- Wink, A.E.; Gross, K.D.; Brown, C.A.; Guermazi, A.; Roemer, F.; Niu, J.; Torner, J.; Lewis, C.E.; Nevitt, M.C.; Tolstykh, I.; et al. Varus Thrust during Walking and the Risk of Incident and Worsening Medial Tibiofemoral MRI Lesions: The Multicenter Osteoarthritis Study. Osteoarthr. Cartil. 2017, 25, 839–845. [Google Scholar] [CrossRef]
- Lo, G.H.; Harvey, W.F.; McAlindon, T.E. Associations of Varus Thrust and Alignment with Pain in Knee Osteoarthritis. Arthritis Rheum. 2012, 64, 2252–2259. [Google Scholar] [CrossRef]
- Iijima, H.; Fukutani, N.; Aoyama, T.; Fukumoto, T.; Uritani, D.; Kaneda, E.; Ota, K.; Kuroki, H.; Matsuda, S. Clinical Phenotype Classifications Based on Static Varus Alignment and Varus Thrust in Japanese Patients with Medial Knee Osteoarthritis. Arthritis Rheumatol. 2015, 67, 2354–2362. [Google Scholar] [CrossRef]
- Fukutani, N.; Iijima, H.; Fukumoto, T.; Uritani, D.; Kaneda, E.; Ota, K.; Aoyama, T.; Tsuboyama, T.; Matsuda, S. Association of Varus Thrust with Pain and Stiffness and Activities of Daily Living in Patients with Medial Knee Osteoarthritis. Phys. Ther. 2016, 96, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Wink, A.E.; Gross, K.D.; Brown, C.A.; Lewis, C.E.; Torner, J.; Nevitt, M.C.; Tolstykh, I.; Sharma, L.; Felson, D.T. Association of Varus Knee Thrust during Walking with Worsening Western Ontario and McMaster Universities Osteoarthritis Index Knee Pain: A Prospective Cohort Study. Arthritis Care Res. 2019, 71, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Sosdian, L.; Hinman, R.S.; Wrigley, T.V.; Paterson, K.L.; Dowsey, M.; Choong, P.; Bennell, K. Quantifying Varus and Valgus Thrust in Individuals with Severe Knee Osteoarthritis. Clin. Biomech. 2016, 39, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Costello, K.E.; Eigenbrot, S.; Geronimo, A.; Guermazi, A.; Felson, D.T.; Richards, J.; Kumar, D. Quantifying Varus Thrust in Knee Osteoarthritis Using Wearable Inertial Sensors: A Proof of Concept. Clin. Biomech. 2020, 80, 105232. [Google Scholar] [CrossRef] [PubMed]
- Iwama, Y.; Harato, K.; Kobayashi, S.; Niki, Y.; Ogihara, N.; Matsumoto, M.; Nakamura, M.; Nagura, T. Estimation of the External Knee Adduction Moment during Gait Using an Inertial Measurement Unit in Patients with Knee Osteoarthritis. Sensors 2021, 21, 1418. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Chang, A.H.; Jackson, R.D.; Nevitt, M.; Moisio, K.C.; Hochberg, M.; Eaton, C.; Kwoh, C.K.; Almagor, O.; Cauley, J.; et al. Varus Thrust and Incident and Progressive Knee Osteoarthritis. Arthritis Rheumatol. 2017, 69, 2136–2143. [Google Scholar] [CrossRef]
- Sharma, L.; Chmiel, J.S.; Almagor, O.; Moisio, K.; Chang, A.H.; Belisle, L.; Zhang, Y.; Hayes, K.W. Knee Instability and Basic and Advanced Function Decline in Knee Osteoarthritis. Arthritis Care Res. 2015, 67, 1095–1102. [Google Scholar] [CrossRef]
- Hall, M.; Bennell, K.L.; Beavers, D.P.; Wrigley, T.V.; DeVita, P.; Messier, S.P. Does Frontal Knee Kinematics Predict Treatment Outcomes? Exploratory Analyses from the Intensive Diet and Exercise for Arthritis (IDEA) Trial. Gait Posture 2018, 63, 139–144. [Google Scholar] [CrossRef]
- Van der Esch, M.; Steultjens, M.; Harlaar, J.; Wolterbeek, N.; Knol, D.; Dekker, J. Varus-Valgus Motion and Functional Ability in Patients with Knee Osteoarthritis. Ann. Rheum. Dis. 2008, 67, 471–477. [Google Scholar] [CrossRef]
- Yoshimura, I.; Naito, M.; Hara, M.; Zhang, J. Analysis of the Significance of the Measurement of Acceleration with Respect to Lateral Laxity of the Anterior Cruciate Ligament Insufficient Knee. Int. Orthop. 2000, 24, 276–278. [Google Scholar] [CrossRef]
- Ishii, Y.; Ishikawa, M.; Kurumadani, H.; Hayashi, S.; Nakamae, A.; Nakasa, T.; Sumida, Y.; Tsuyuguchi, Y.; Kanemitsu, M.; Deie, M.; et al. Increase in Medial Meniscal Extrusion in the Weight-Bearing Position Observed on Ultrasonography Correlates with Lateral Thrust in Early-Stage Knee Osteoarthritis. J. Orthop. Sci. 2020, 25, 640–646. [Google Scholar] [CrossRef]
- Moe-Nilssen, R. A New Method for Evaluating Motor Control in Gait under Real-Life Environmental Conditions. Part 2: Gait Analysis. Clin. Biomech. 1998, 13, 328–335. [Google Scholar] [CrossRef]
- Van Iersel, M.B.; Olde Rikkert, M.G.M.; Borm, G.F. A Method to Standardize Gait and Balance Variables for Gait Velocity. Gait Posture 2007, 26, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Asai, T.; Misu, S.; Doi, T.; Yamada, M.; Ando, H. Effects of Dual-Tasking on Control of Trunk Movement during Gait: Respective Effect of Manual- and Cognitive-Task. Gait Posture 2014, 39, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Takeuchi, R.; Sawaguchi, T.; Ishikawa, H.; Saito, T.; Goldhahn, S. Cross-Cultural Adaptation and Validation of the Japanese Knee Injury and Osteoarthritis Outcome Score (KOOS). J. Orthop. Sci. 2011, 16, 516–523. [Google Scholar] [CrossRef]
- Jasiewicz, J.M.; Allum, J.H.J.; Middleton, J.W.; Barriskill, A.; Condie, P.; Purcell, B.; Li, R.C.T. Gait Event Detection Using Linear Accelerometers or Angular Velocity Transducers in Able-Bodied and Spinal-Cord Injured Individuals. Gait Posture 2006, 24, 502–509. [Google Scholar] [CrossRef]
- Misu, S.; Asai, T.; Ono, R.; Sawa, R.; Tsutsumimoto, K.; Ando, H.; Doi, T. Development and Validity of Methods for the Estimation of Temporal Gait Parameters from Heel-Attached Inertial Sensors in Younger and Older Adults. Gait Posture 2017, 57, 295–298. [Google Scholar] [CrossRef]
- Henriksen, M.; Lund, H.; Moe-Nilssen, R.; Bliddal, H.; Danneskiod-Samsøe, B. Test-Retest Reliability of Trunk Accelerometric Gait Analysis. Gait Posture 2004, 19, 288–297. [Google Scholar] [CrossRef]
- Kobsar, D.; Osis, S.T.; Phinyomark, A.; Boyd, J.E.; Ferber, R. Reliability of Gait Analysis Using Wearable Sensors in Patients with Knee Osteoarthritis. J. Biomech. 2016, 49, 3977–3982. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Tsurumiya, K.; Hayasaka, W.; Komatsu, A.; Tsukamoto, H.; Suda, T.; Iwami, T.; Shimada, Y. Quantitative Evaluation Related to Disease Progression in Knee Osteoarthritis Patients during Gait. Adv. Biomed. Eng. 2021, 10, 51–57. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Saito, K.; Matsunaga, T.; Iwami, T.; Saito, H.; Kijima, H.; Akagawa, M.; Komatsu, A.; Miyakoshi, N.; Shimada, Y. Diagnostic Accuracy of the Mobile Assessment of Varus Thrust Using Nine-Axis Inertial Measurement Units. Prog. Rehabil. Med. 2021, 6, 20210009. [Google Scholar] [CrossRef] [PubMed]
- Collins, N.J.; Prinsen, C.A.C.; Christensen, R.; Bartels, E.M.; Terwee, C.B.; Roos, E.M. Knee Injury and Osteoarthritis Outcome Score (KOOS): Systematic Review and Meta-analysis of Measurement Properties. Osteoarthr. Cartil. 2016, 24, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Petrofsky, J.S.; Bweir, S.; Andal, A.; Chavez, J.; Crane, A.; Saunders, J.; Laymon, M. Joint Acceleration during Gait in Relation to Age. Eur. J. Appl. Physiol. 2004, 92, 254–262. [Google Scholar] [CrossRef]
- Hernández, A.; Silder, A.; Heiderscheit, B.C.; Thelen, D.G. Effect of Age on Center of Mass Motion during Human Walking. Gait Posture 2009, 30, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, L.; Shen, F.; Ma, Y.; Fan, Y.; Niu, H. Dynamic Walking Stability of Elderly People with Various BMIs. Gait Posture 2019, 68, 168–173. [Google Scholar] [CrossRef] [PubMed]
Variables | Knee OA Group | Healthy Group | p Value | |
---|---|---|---|---|
(n = 16) | (n = 16) | |||
Age | (years) | 62.8 ± 6.5 | 53.4 ± 4.6 | <0.001 |
Females/males | (n) | 10/6 | 10/6 | 1.00 |
Body weight | (kg) | 67.7 ± 16.7 | 60.5 ± 7.2 | 0.12 |
Height | (m) | 1.59 ± 0.11 | 1.63 ± 0.08 | 0.22 |
Body mass index | (kg/m2) | 26.6 ± 4.6 | 22.7 ± 2.2 | 0.005 |
Gait speed | (km/h) | 1.26 ± 0.35 | 1.98 ± 0.26 | <0.001 |
Affected side: Left/right | (n) | 6/10 | — | — |
K-L classification (II/III/IV) | (n) | 4/12/0 | — | — |
KOOS score | ||||
Symptom score | 63.8 ± 10.8 | — | — | |
Pain score | 55.1 ± 16.4 | — | — | |
ADL score | 65.8 ± 16.1 | — | — | |
Sports score | 34.8 ± 21.8 | — | — | |
QOL score | 33.2 ± 16.4 | — | — |
Variables | Day 1 | Day 2 | ICC1,1 | |
---|---|---|---|---|
stRMS in the ML direction at tibia | (m/s2) | 1.86 ± 0.47 | 1.96 ± 0.54 | 0.70 |
stRMS in the ML direction at femur | (m/s2) | 1.41 ± 0.35 | 1.45 ± 0.37 | 0.65 |
A-RMS in the ML direction at tibia | (m/s/deg) | 0.027 ± 0.008 | 0.029 ± 0.010 | 0.85 |
A-RMS in the ML direction at femur | (m/s/deg) | 0.039 ± 0.011 | 0.039 ± 0.012 | 0.73 |
Variables | Knee OA Group | Healthy Group | Effect Size | p Value | |
---|---|---|---|---|---|
(n = 16) | (n = 16) | (Cohen’s d) | |||
stRMS in the ML direction at tibia | (m/s2) | 1.71 ± 0.45 | 2.00 ± 0.46 | 0.64 | 0.08 |
stRMS in the ML direction at femur | (m/s2) | 1.40 ± 0.45 | 1.42 ± 0.23 | 0.06 | 0.83 |
A-RMS in the ML direction at tibia | (m/s/deg) | 0.032 ± 0.009 | 0.023 ± 0.005 | 1.23 | 0.002 |
A-RMS in the ML direction at femur | (m/s/deg) | 0.044 ± 0.013 | 0.034 ± 0.007 | 0.97 | 0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misu, S.; Tanaka, S.; Ishihara, K.; Asai, T.; Nishigami, T. Applied Assessment Method for Varus Thrust during Walking in Patients with Knee Osteoarthritis Using Acceleration Data Measured by an Inertial Measurement Unit. Sensors 2022, 22, 6460. https://doi.org/10.3390/s22176460
Misu S, Tanaka S, Ishihara K, Asai T, Nishigami T. Applied Assessment Method for Varus Thrust during Walking in Patients with Knee Osteoarthritis Using Acceleration Data Measured by an Inertial Measurement Unit. Sensors. 2022; 22(17):6460. https://doi.org/10.3390/s22176460
Chicago/Turabian StyleMisu, Shogo, So Tanaka, Kohei Ishihara, Tsuyoshi Asai, and Tomohiko Nishigami. 2022. "Applied Assessment Method for Varus Thrust during Walking in Patients with Knee Osteoarthritis Using Acceleration Data Measured by an Inertial Measurement Unit" Sensors 22, no. 17: 6460. https://doi.org/10.3390/s22176460
APA StyleMisu, S., Tanaka, S., Ishihara, K., Asai, T., & Nishigami, T. (2022). Applied Assessment Method for Varus Thrust during Walking in Patients with Knee Osteoarthritis Using Acceleration Data Measured by an Inertial Measurement Unit. Sensors, 22(17), 6460. https://doi.org/10.3390/s22176460