Calibrated Photoacoustic Spectrometer Based on a Conventional Imaging System for In Vitro Characterization of Contrast Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Data Acquisition
2.1.1. Sample Compartment
2.1.2. The Conventional PAI System
2.1.3. Measurement Process
2.2. Calibrated Measurements with the PA Spectrometer
2.2.1. The Photoacoustic Coefficient of a Sample θPA(λ)
2.2.2. Theoretical Relationship between APA and θPA(λ)
2.2.3. Statistical Evaluation
2.3. Preparation of the Absorbing Solutions
2.3.1. Non-Fluorescent and Non-Scattering Molecular Solutions
2.3.2. Choice of the Calibration Solution
2.3.3. Commonly Used PA Contrast Agents
3. Results
3.1. Robustness of the Measurements with the Calibration Solution
3.1.1. Measurement Repeatability
3.1.2. Influence of the Number of Acquisitions for the Evaluation of
3.1.3. Measurement Protocol for a Series of Samples
3.2. Characterization of the PA Spectrometer with Non-Fluoresent and Non-Scattering Molecular Solutions
3.2.1. Linearity of the PA Spectrometer
3.2.2. Evolution of ηsample/ηcalibration with the Concentration and the Temperature for the Different Solutions
3.3. Characterization of Conventional Contrast Agents
3.3.1. Gold Nanorods
3.3.2. Indocyanine Green
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef] [PubMed]
- Taruttis, A.; Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Phot. 2015, 9, 219–227. [Google Scholar] [CrossRef]
- Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2018, 48, 2053–2108. [Google Scholar] [CrossRef]
- Borg, R.E.; Rochford, J. Molecular Photoacoustic Contrast Agents: Design Principles & Applications. Photochem. Photobiol. 2018, 94, 1175–1209. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.J.H.; Balasundaram, G.; Driessen, W.; McLaren, R.; Wong, C.L.; Dinish, U.S.; Attia, A.B.E.; Ntziachristos, V.; Olivo, M. Multifunctional photosensitizer-based contrast agents for photoacoustic imaging. Sci. Rep. 2014, 4, 5342. [Google Scholar] [CrossRef] [PubMed]
- Armanetti, P.; Flori, A.; Avigo, C.; Conti, L.; Valtancoli, B.; Petroni, D.; Doumett, S.; Cappiello, L.; Ravagli, C.; Baldi, G.; et al. Spectroscopic and photoacoustic characterization of encapsulated iron oxide super-paramagnetic nanoparticles as a new multiplatform contrast agent. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 199, 248–253. [Google Scholar] [CrossRef]
- Laufer, J.; Zhang, E.; Beard, P. Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 600–607. [Google Scholar] [CrossRef]
- Stahl, T.; Allen, T.; Beard, P. Characterization of the thermalisation efficiency and photostability of photoacoustic contrast agents. In Photons Plus Ultrasound: Imaging and Sensing 2014; SPIE: Bellingham, WA, USA, 2014; Volume 8943, p. 89435H. [Google Scholar] [CrossRef]
- Stahl, T. Characterisation of Contrast Agents for Photoacoustic Imaging. Ph.D. Thesis, University College London, London, UK, 2016. [Google Scholar]
- Fonseca, M.; An, L.; Beard, P.; Cox, B. Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms. J. Biomed. Opt. 2017, 22, 1. [Google Scholar] [CrossRef] [Green Version]
- Fuenzalida Werner, J.P.; Huang, Y.; Mishra, K.; Janowski, R.; Vetschera, P.; Heichler, C.; Chmyrov, A.; Neufert, C.; Niessing, D.; Ntziachristos, V.; et al. Challenging a Preconception: Optoacoustic Spectrum Differs from the Optical Absorption Spectrum of Proteins and Dyes for Molecular Imaging. Anal. Chem. 2020, 92, 10717–10724. [Google Scholar] [CrossRef]
- Pelivanov, I.; Petrova, E.; Yoon, S.J.; Qian, Z.; Guye, K.; O’Donnell, M. Molecular fingerprinting of nanoparticles in complex media with non-contact photoacoustics: Beyond the light scattering limit. Sci. Rep. 2018, 8, 14425. [Google Scholar] [CrossRef] [PubMed]
- Schellenberg, M.W.; Hunt, H.K. Hand-held optoacoustic imaging: A review. Photoacoustics 2018, 11, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Kratkiewicz, K.; Manwar, R.; Zhou, Y.; Mozaffarzadeh, M.; Avanaki, K. Technical Considerations when using Verasonics Research Ultrasound Platform for Developing a Photoacoustic Imaging System. Biomed. Opt. Express 2021, 12, 1050–1084. [Google Scholar] [CrossRef] [PubMed]
- Arconada-Alvarez, S.J.; Lemaster, J.E.; Wang, J.; Jokerst, J.V. The development and characterization of a novel yet simple 3D printed tool to facilitate phantom imaging of photoacoustic contrast agents. Photoacoustics 2017, 5, 17–24. [Google Scholar] [CrossRef]
- Marczak, W. Water as a standard in the measurements of speed of sound in liquids. J. Acoust. Soc. Am. 1997, 102, 2776–2779. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. [Google Scholar] [CrossRef]
- Zhou, Y.; Yao, J.; Wang, L.V. Tutorial on photoacoustic tomography. J. Biomed. Opt. 2016, 21, 061007. [Google Scholar] [CrossRef]
- Yao, D.-K.; Zhang, C.; Maslov, K.; Wang, L.V. Photoacoustic measurement of the Grüneisen parameter of tissue. J. Biomed. Opt. 2014, 19, 017007. [Google Scholar] [CrossRef]
- Gehrung, M.; Bohndiek, S.E.; Brunker, J. Development of a blood oxygenation phantom for photoacoustic tomography combined with online pO2 detection and flow spectrometry. J. Biomed. Opt. 2019, 24, 1. [Google Scholar] [CrossRef]
- Petrova, E.; Ermilov, S.; Su, R.; Nadvoretskiy, V.; Conjusteau, A.; Oraevsky, A. Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions. Opt. Express 2013, 21, 25077. [Google Scholar] [CrossRef]
- Kirchherr, A.K.; Briel, A.; Mäder, K. Stabilization of indocyanine green by encapsulation within micellar systems. Mol. Pharm. 2009, 6, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Hale, G.M.; Querry, M.R. Optical Constants of Water in the 200-nm to 200-μm Wavelength Region. Appl. Opt. 1973, 12, 555. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Frey, W.; Aglyamov, S.; Emelianov, S. Environment-dependent generation of photoacoustic waves from plasmonic nanoparticles. Small 2012, 8, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-S.; Zhao, Y.; Yoon, S.J.; Gambhir, S.S.; Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 2019, 14, 465–472. [Google Scholar] [CrossRef]
- Mantri, Y.; Jokerst, J.V. Engineering Plasmonic Nanoparticles for Enhanced Photoacoustic Imaging. ACS Nano 2020, 14, 9408–9422. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.; Joline, L.; Snow, E.; Francke, S.; Marques, C.; Bernardes, R. Stabilizing Indocyanin Green for Use as Quantitative Standards. Invest. Ophthalmol. Vis. Sci. 2008, 49, 2116. [Google Scholar]
- Wu, Y.; Zhang, H.K.; Kang, J.; Boctor, E.M. An economic photoacoustic imaging platform using automatic laser synchronization and inverse beamforming. Ultrasonics 2020, 103, 106098. [Google Scholar] [CrossRef]
- Rathod, V.T. A review of acoustic impedance matching techniques for piezoelectric sensors and transducers. Sensors 2020, 20, 4051. [Google Scholar] [CrossRef]
- Mabuza, B.R.; Netshidavhini, N. The effect of a middle layer on ultrasonic wave propagating in a three-layered structure. In Proceedings of the Meetings on Acoustics ICA2013, Montreal, QC, Canada, 2–7 June 2013; Volume 19, p. 030076. [Google Scholar] [CrossRef]
- Khan, M.I.; Sun, T.; Diebold, G.J. Photoacoustic waves generated by absorption of laser radiation in optically thin cylinders. J. Acoust. Soc. Am. 1993, 94, 931–940. [Google Scholar] [CrossRef]
Symbol | Name | Corresponding Equation or Section |
---|---|---|
λ | Optical wavelength | |
APA | Amplitude of one tube in the image | Section 2.1.3 |
µSPP | Attenuation coefficient | Section 2.2.1 |
µa | Absorption coefficient | |
η | Photoacoustic generation efficiency | Equation (2) |
θPA | Photoacoustic coefficient | Equation (3) |
Equation (7) | ||
Equation (8) | ||
γ | and 1 | Section 3.1 |
and µa | Equation (12) |
Compound | Mass of Solid for 50.0 mL of Solution | Molar Mass | Molar Concentration | Wavelength (λmax) at the Absorption Maximum 1 | Molar Absorptivity at λmax | Relative Range 2 of µa 1 |
---|---|---|---|---|---|---|
CuSO4·5H2O | 3.12 g (crystals) | 249.69 g/mol | 250 mM | 810 nm | 12 M−1·cm−1 | 0.7 |
NiSO4·6H2O | 18.00 g (crystals) | 262.85 g/mol | 1.37 M | 720 nm | 2.2 M−1·cm−1 | 1.9 |
Nigrosin | 12 mg (powder) | 202.21 g/mol | 1.2 mM | 680 nm | ~2.103 M−1·cm−1 | 1.5 |
Sample | Temperature (°C) | α0 | β (M−1) | R2 |
---|---|---|---|---|
CuSO4 | 20.3 | 0.81 | 1.00 | 0.99 |
25.0 | 0.80 | 1.01 | 0.95 | |
NiSO4 | 20.3 | 0.90 | 0.74 | 0.99 |
25.0 | 0.84 | 0.65 | 0.99 | |
Nigrosin * | 20.3 | 0.80 | - | - |
25.0 | 0.90 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas, T.; Sarkar, M.; Atlas, Y.; Linger, C.; Renault, G.; Gazeau, F.; Gateau, J. Calibrated Photoacoustic Spectrometer Based on a Conventional Imaging System for In Vitro Characterization of Contrast Agents. Sensors 2022, 22, 6543. https://doi.org/10.3390/s22176543
Lucas T, Sarkar M, Atlas Y, Linger C, Renault G, Gazeau F, Gateau J. Calibrated Photoacoustic Spectrometer Based on a Conventional Imaging System for In Vitro Characterization of Contrast Agents. Sensors. 2022; 22(17):6543. https://doi.org/10.3390/s22176543
Chicago/Turabian StyleLucas, Théotim, Mitradeep Sarkar, Yoann Atlas, Clément Linger, Gilles Renault, Florence Gazeau, and Jérôme Gateau. 2022. "Calibrated Photoacoustic Spectrometer Based on a Conventional Imaging System for In Vitro Characterization of Contrast Agents" Sensors 22, no. 17: 6543. https://doi.org/10.3390/s22176543
APA StyleLucas, T., Sarkar, M., Atlas, Y., Linger, C., Renault, G., Gazeau, F., & Gateau, J. (2022). Calibrated Photoacoustic Spectrometer Based on a Conventional Imaging System for In Vitro Characterization of Contrast Agents. Sensors, 22(17), 6543. https://doi.org/10.3390/s22176543