Assessment of SAR in Road-Users from 5G-V2X Vehicular Connectivity Based on Computational Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Car Model
2.2. The 5G-V2X Antenna Model and Positioning
2.3. The Human Model
2.4. The Simulated Exposure Scenario
- CONF 1: the Ella model is placed next to the frontal car hood, at its midline;
- CONF 2: the Ella model is placed laterally to the car body, in front of the antenna array mounted on the windscreen;
- CONF 3: the Ella model is placed laterally to the car body, at an equal distance from the two antennas;
- CONF 4: the Ella model is placed laterally to the car body, in front of the array antenna mounted on the roof top;
- CONF 5: the Ella model is placed next to the car trunk, at its midline.
2.5. Human Exposure Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sjoberg, K.; Andres, P.; Buburuzan, T.; Brakemeier, A. Cooperative Intelligent Transport Systems in Europe: Current Deployment Status and Outlook. IEEE Veh. Technol. Mag. 2017, 12, 89–97. [Google Scholar] [CrossRef]
- Shen, X.; Fantacci, R.; Chen, S. Internet of Vehicles [Scanning the Issue]. Proc IEEE. 2020, 108, 242–245. [Google Scholar] [CrossRef]
- Wang, J.; Shao, Y.; Ge, Y.; Yu, R. A Survey of Vehicle to Everything (V2X) Testing. Sensors 2019, 19, 334. [Google Scholar] [CrossRef]
- Ghosal, A.; Conti, M. Security issues and challenges in V2X: A Survey. Comput. Netw. 2020, 169, 107093. [Google Scholar] [CrossRef]
- Rebbeck, T.; Stewart, J.; Lacour, H.A.; Lillen, A.; McClure, D.; Dunoyer, A. Socio-economic benefits of cellular V2X. In Final Report for 5GAA; 5GAA: Munich, Germany, 2017. [Google Scholar]
- IEEE Standard 802.11p-2010; IEEE Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments. The Institute of Electrical and Electronics Engineers: Manhattan, NY, USA, 2010.
- Standard ETSI EN 302 571 V2.1.1; Intelligent Transport Systems (ITS); Radiocommunications Equipment Operating in the 5855 MHz to 5925 MHz Frequency Band; Harmonised Standard Covering the Essential Requirements of Article 3.2 of Directive 2014/53/EU. ETSI: Valbonne, France, 2017.
- Standard ETSI EN 303 613 V1.1.1; Intelligent Transport Systems (ITS); LTE-V2X Access Layer Specification for Intelligent Transport Systems Operating in the 5 GHz Frequency Band. ETSI: Valbonne, France, 2020.
- 5GAA. Coexistence of C-V2X and ITS-G5 at 5.9GHz. In Position-Paper; 5GAA: Munich Germany, 2018; Available online: www.5GAA.org (accessed on 18 July 2022).
- Bazzi, A.; Cecchini, G.; Menarini, M.; Masini, B.M.; Zanella, A. Survey and Perspectives of Vehicular Wi-Fi versus Sidelink Cellular-V2X in the 5G Era. Future Internet 2019, 11, 122. [Google Scholar] [CrossRef]
- 3GPP TR 38.886 V16.3.0; Technical Specification Group Radio Access Network; V2X Services Based on NR; User Equipment (UE) Radio Transmission and Reception, Release 16. 3GPP Support Office: Valbonne, France, 2021.
- 3GPP TR 38.785 V0.3.0; Technical Specification Group Radio Access Network; NR Sidelink Enhancement; User Equipment (UE) Radio Transmission and Reception, Release 17. 3GPP Support Office: Valbonne, France, 2021.
- 5GPPP. 5GCAR Deliverable D2.1: 5GCAR Scenarios, Use Cases, Requirements and KPIs; Version: 2.0; 5GPPP: Heidelberg, Germany, 28 February 2019. [Google Scholar]
- Sreelakshmi, K.; Bora, P.; Mudaliar, M.; Baburao Dhanade, Y.B.; Madhav, B.T.P. Linear array Yagi-Uda 5G antenna for vehicular application. Int. J. Eng. Technol. 2017, 7, 513. [Google Scholar] [CrossRef]
- Bamy, C.L.; Moukanda Mbango, F.; Konditi, D.B.O.; Moukala Mpele, P. A compact dual-band Dolly-shaped antenna with parasitic elements for automotive radar and 5G applications. Heliyon 2021, 7, e06793. [Google Scholar] [CrossRef]
- Yacoub, A.; Aloi, D. Low Profile PIFA Antenna for Vehicular 5G and DSRC Communication Systems; SAE International: Washington, DC, USA, 2021; pp. 1–150. Available online: https://www.sae.org/content/2021-01-0150/ (accessed on 18 July 2022).
- Hasturkoglu, S.; Lindenmeier, S. Antenna Module with New Wideband 5G-Antenna Array at 28 GHz in Combination with GNSS- and 4G/WLAN/DSRC in Automotive Environment. In Proceedings of the 2018 48th European Microwave Conference (EuMC), Madrid, Spain, 23–27 September 2018; pp. 1073–1076. Available online: https://ieeexplore.ieee.org/document/8541591/ (accessed on 18 July 2022).
- Pfadler, A.; Ballesteros, C.; Romeu, J.; Jofre, L. Hybrid Massive MIMO for Urban V2I: Sub-6 GHz vs mmWave Performance Assessment. IEEE Trans. Veh. Technol. 2020, 69, 4652–4662. [Google Scholar] [CrossRef]
- Kakkavas, A.; García, M.H.C.; Stirling-Gallacher, R.A.; Nossek, J.A. Multi-Array 5G V2V Relative Positioning: Performance Bounds. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 206–212. [Google Scholar]
- Nasr, A.; Sarabandi, K.; Takla, M. Multi-beam Dual-Polarized Windshield Antenna with Wide Elevation Coverage for 5G V2X Applications. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Toronto, ON, Canada, 5–10 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1333–1334. [Google Scholar]
- Bushberg, J.T.; Chou, C.K.; Foster, K.R.; Kavet, R.; Maxson, D.P.; Tell, R.A.; Ziskin, M.C. IEEE Committee on Man and Radiation—COMAR Technical Information Statement: Health and Safety Issues Concerning Exposure of the General Public to Electromagnetic Energy from 5G Wireless Communications Networks. Health Phys. 2020, 119, 236–246. [Google Scholar] [CrossRef]
- Dürrenberger, G.; Fröhlich, J.; Röösli, M.; Mattsson, M.O. EMF monitoring—Concepts, activities, gaps and options. Int. J. Environ. Res. Public Health 2014, 11, 9460–9479. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Vázquez, R.; Escobar, I.; Franco, T.; Arribas, E. Physical units to report intensity of electromagnetic wave. Environ. Res. 2022, 204, 112341. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.S.; Gallucci, S.; Siervo, B.; Hartwig, V. Numerical Analysis of Electromagnetic Field Exposure from 5G Mobile Communications at 28 GHZ in Adults and Children Users for Real-World Exposure Scenarios. Int. J. Environ. Res. Public Health 2021, 18, 1073. [Google Scholar] [CrossRef]
- Bonato, M.; Dossi, L.; Chiaramello, E.; Fiocchi, S.; Gallucci, S.; Tognola, G.; Ravazzani, P.; Parazzini, M. Human RF-EMF Exposure Assessment Due to Access Point in Incoming 5G Indoor Scenario. IEEE J. Electromagn. RF Microw. Med. Biol. 2021, 5, 269–276. [Google Scholar] [CrossRef]
- Bonato, M.; Dossi, L.; Gallucci, S.; Benini, M.; Tognola, G.; Parazzini, M. Assessment of Human Exposure Levels Due to Mobile Phone Antennas in 5G Networks. Int. J. Environ. Res. Public Health 2022, 19, 1546. [Google Scholar] [CrossRef]
- Morimoto, R.; Hirata, A.; Laakso, I.; Ziskin, M.C.; Foster, K.R. Time constants for temperature elevation in human models exposed to dipole antennas and beams in the frequency range from 1 to 30 GHz. Phys. Med. Biol. 2017, 62, 1676–1699. [Google Scholar] [CrossRef]
- Thors, B.; Colombi, D.; Ying, Z.; Bolin, T.; Törnevik, C. Exposure to RF EMF From Array Antennas in 5G Mobile Communication Equipment. IEEE Access 2016, 4, 7469–7478. [Google Scholar] [CrossRef]
- Laakso, I.; Morimoto, R.; Heinonen, J.; Jokela, K.; Hirata, A. Human exposure to pulsed fields in the frequency range from 6 to 100 GHz. Phys. Med. Biol. 2017, 62, 6980. [Google Scholar] [CrossRef]
- Shikhantsov, S.; Thielens, A.; Vermeeren, G.; Tanghe, E.; Demeester, P.; Martens, L.; Torfs, G.; Joseph, W. Hybrid Ray-Tracing/FDTD Method for Human Exposure Evaluation of a Massive MIMO Technology in an Industrial Indoor Environment. IEEE Access 2019, 7, 21020–21031. [Google Scholar] [CrossRef]
- Tognola, G.; Bonato, M.; Benini, M.; Aerts, S.; Gallucci, S.; Chiaramello, E.; Fiocchi, S.; Parazzini, M.; Masini, B.M.; Joseph, W.; et al. Exposure to RF Electromagnetic Fields in the Connected Vehicle: Survey of Existing and Forthcoming Scenarios. IEEE Access 2022, 10, 47764–47781. [Google Scholar] [CrossRef]
- Jeladze, V.B.; Nozadze, T.R.; Tabatadze, V.A.; Petoev-Darsavelidze, I.A.; Prishvin, M.M.; Zaridze, R.S. Electromagnetic Exposure Study on a Human Located inside the Car Using the Method of Auxiliary Sources. J. Commun. Technol. Electron. 2020, 65, 457–464. [Google Scholar] [CrossRef]
- Harris, L.R.; Zhadobov, M.; Chahat, N.; Sauleau, R. Electromagnetic dosimetry for adult and child models within a car: Multi-exposure scenarios. Int. J. Microw. Wirel. Technol. 2011, 3, 707–715. [Google Scholar] [CrossRef]
- Leung, S.-W.; Diao, Y.; Chan, K.-H.; Siu, Y.-M.; Wu, Y. Specific Absorption Rate Evaluation for Passengers Using Wireless Communication Devices Inside Vehicles with Different Handedness, Passenger Counts, and Seating Locations. IEEE Trans. Biomed. Eng. 2012, 59, 2905–2912. [Google Scholar] [CrossRef]
- Baramili, E.; Sarkis, R.; Saleh, M.B. Investigation of Driver EMF Exposure From 4G/5G Automotive Glass Mounted Antennas. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Toronto, ON, Canada, 5–10 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1451–1452. Available online: https://ieeexplore.ieee.org/document/9329845/ (accessed on 18 July 2022).
- Ruddle, A.R.; Low, L.; Rigelsford, J.M.; Langley, R.J. Variation of computed in-vehicle SAR with number and location of occupants at commonly used communications frequencies. In Proceedings of the 10th International Symposium on Electromagnetic Compatibility, York, UK, 26–30 September 2011; pp. 756–761. [Google Scholar]
- Ruddle, A.R. Preliminary estimates of electromagnetic field exposures due to advanced vehicle technologies. In Proceedings of the 2016 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 14–15 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. Available online: http://ieeexplore.ieee.org/document/7807587/ (accessed on 18 July 2022).
- Tognola, G.; Masini, B.; Gallucci, S.; Bonato, M.; Fiocchi, S.; Chiaramello, E.; Parazzini, E.; Ravazzani, P. Numerical Assessment of RF Human Exposure in Smart Mobility Communications. IEEE J. Electromagn. RF Microw. Med. Biol. 2021, 5, 100–107. [Google Scholar] [CrossRef]
- Ziegelberger, G.; Croft, R.; Feychting, M.; Green, A.C.; Hirata, A.; d’Inzeo, G.; Jokela, K.; Loughran, S.; Marino, C.; Miller, S.; et al. ICNIRP guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar]
- Ruddle, A.R. Influence of dielectric materials on in-vehicle electromagnetic fields. In Proceedings of the 2008 IET Seminar on Electromagnetic Propagation in Structures and Buildings, London, UK, 4 December 2008; pp. 1–6. [Google Scholar]
- H2020 5G PPP 5GCar Project. Available online: https://5gcar.eu. (accessed on 16 June 2022).
- 5GPPP. 5GCAR Deliverable D3.1: Intermediate 5G V2X Radio; Version: v1.0; 5GPPP: Heidelberg, Germany, 2018. [Google Scholar]
- Artner, G.; Kotterman, W.; Del Galdo, G.; Hein, M.A. Automotive Antenna Roof for Cooperative Connected Driving. IEEE Access 2019, 7, 20083–20090. [Google Scholar] [CrossRef]
- TE Connectivity White Paper. V2X—An Important Building Block in Cooperative Intelligent Transport Systems (C-ITS). 2019. Available online: https://www.te.com/content/dam/te-com/documents/automotive/global/automotive-next-gen-mobility-v2x-09-2019-en.pdf (accessed on 18 July 2022).
- Gosselin, M.C.; Neufeld, E.; Moser, H.; Huber, E.; Farcito, S.; Gerber, L.; Jedensjö, M.; Hilber, I.; Gennaro, F.D.; Lloyd, B.; et al. Development of a new generation of high-resolution anatomical models for medical device evaluation: The Virtual Population 3.0. Phys. Med. Biol. 2014, 59, 5287–5303. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41, 2231–2249. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S.C.; Piket-May, M. Computational electromagnetics: The finite-difference time-domain method. In The Electrical Engineering Handbook; Elsevier: Amsterdam, The Netherlands, 2004; p. 3. [Google Scholar]
- Uusitupa, T.; Laakso, I.; Ilvonen, S.; Nikoskinen, K. SAR variation study from 300 to 5000 MHz for 15 voxel models including different postures. Phys. Med. Biol. 2010, 55, 1157–1176. [Google Scholar] [CrossRef]
- Bonato, M.; Dossi, L.; Chiaramello, E.; Fiocchi, S.; Tognola, G.; Parazzini, M. Stochastic Dosimetry Assessment of the Human RF-EMF Exposure to 3D Beamforming Antennas in indoor 5G Networks. Appl. Sci. 2021, 11, 1751. [Google Scholar] [CrossRef]
- Tognola, G.; Bonato, M.; Chiaramello, E.; Fiocchi, S.; Magne, I.; Souques, M.; Parazzini, M.; Ravazzani, P. Use of Machine Learning in the Analysis of Indoor ELF MF Exposure in Children. Int. J. Environ. Res. Public Health 2019, 16, 1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Configuration | Orientation | QCD | % > 0.7·pSAR10g |
---|---|---|---|
CONF 1 | Frontal | 0.984 | 0.061% |
Orthogonal | 0.978 | 0.053% | |
CONF 2 | Frontal | 0.957 | 0.114% |
Orthogonal | 0.878 | 0.548% | |
CONF 3 | Frontal | 0.937 | 0.036% |
Orthogonal | 0.801 | 0.095% | |
CONF 4 | Frontal | 0.953 | 0.266% |
Orthogonal | 0.879 | 0.173% | |
CONF 5 | Frontal | 0.987 | 0.293% |
Orthogonal | 0.926 | 0.368% |
Configuration | Orientation | QCD | % > 0.7·pSAR10g |
---|---|---|---|
CONF 1 | Frontal | 0.912 | 0.456% |
Orthogonal | 0.907 | 0.449% | |
CONF 2 | Frontal | 0.931 | 3.790% |
Orthogonal | 0.872 | 0.970% | |
CONF 3 | Frontal | 0.770 | 0.325% |
Orthogonal | 0.689 | 0.858% | |
CONF 4 | Frontal | 0.872 | 2.382% |
Orthogonal | 0.911 | 0.144% | |
CONF 5 | Frontal | 0.917 | 1.872% |
Orthogonal | 0.833 | 5.050% |
Configuration | Orientation | QCD | % > 0.7·pSAR10g |
---|---|---|---|
CONF 1 | Frontal | 0.912 | 0.026% |
Orthogonal | 0.917 | 0.010% | |
CONF 2 | Frontal | 0.879 | 0.021% |
Orthogonal | 0.907 | 0.023% | |
CONF 3 | Frontal | 0.858 | 0.145% |
Orthogonal | 0.893 | 0.080% | |
CONF 4 | Frontal | 0.865 | 0.022% |
Orthogonal | 0.934 | 0.080% | |
CONF 5 | Frontal | 0.957 | 0.176% |
Orthogonal | 0.910 | 0.044% |
Configuration | Orientation | QCD | % > 0.7·pSAR10g |
---|---|---|---|
CONF 1 | Frontal | 0.420 | 41.238% |
Orthogonal | 0.914 | 12.880% | |
CONF 2 | Frontal | 0.503 | 16.170% |
Orthogonal | 0.760 | 3.772% | |
CONF 3 | Frontal | 0.398 | 37.407% |
Orthogonal | 0.905 | 7.189% | |
CONF 4 | Frontal | 0.556 | 22.575% |
Orthogonal | 0.803 | 18.869% | |
CONF 5 | Frontal | 0.372 | 11.953% |
Orthogonal | 0.845 | 15.344% |
Study Name | Frequency and Power | EMF Source Position Re: Vehicle Cabin | Quantity Estimated & Main Study Outcomes |
---|---|---|---|
Jeladze et al. [32] | 450, 900 and 1800 MHz bands at 1 W. | Internal: mobile phone antenna at 2.5 cm from the phantom head. | Maximum point SAR: 96 W/kg at 450 MHz, 296 W/kg at 900 MHz and 127 W/kg at 1800 MHz. |
Harris et al. [33] | UMTS (2.1 GHz) at 125–250 mW. WiMax (2.5 GHz) at 200 mW. Bluetooth (2.45 GHz) at 2 mW. | Internal: emitting devices were placed inside the vehicle cabin at driver and passenger seats. | Maximum SARwb: 2.13 mW/kg with UMTS. Maximum SAR10g: 25.3 mW/kg with UMTS for head/trunk; 392.6 mW/kg with WiMax for limbs. |
Leung et al. [34] | 900 MHz band at 2 W. | Internal: mobile phone emitting device placed at user(s)’s ear level. | Maximum SAR10g: 3.02 W/kg for single-user condition; 3.77 W/kg for two-user condition. |
Tognola et al. [38] | ITS 5.9 GHz at 30 W. | External: four V2V quarter-wave monopole antennas mounted on the roof of the car | Maximum SARwb: 0.008 W/kg. Maximum SAR10g: 1.58 W/kg for head/torso; 0.76 W/kg for limbs. |
Present study | 3.5 GHz band at 1 W. | External: two 5G-V2X array antennas positioned in the rear and front position on the car body | Maximum SARwb: 0.074 mW/kg. Maximum SAR10g: 6.818 mW/kg. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonato, M.; Tognola, G.; Benini, M.; Gallucci, S.; Chiaramello, E.; Fiocchi, S.; Parazzini, M. Assessment of SAR in Road-Users from 5G-V2X Vehicular Connectivity Based on Computational Simulations. Sensors 2022, 22, 6564. https://doi.org/10.3390/s22176564
Bonato M, Tognola G, Benini M, Gallucci S, Chiaramello E, Fiocchi S, Parazzini M. Assessment of SAR in Road-Users from 5G-V2X Vehicular Connectivity Based on Computational Simulations. Sensors. 2022; 22(17):6564. https://doi.org/10.3390/s22176564
Chicago/Turabian StyleBonato, Marta, Gabriella Tognola, Martina Benini, Silvia Gallucci, Emma Chiaramello, Serena Fiocchi, and Marta Parazzini. 2022. "Assessment of SAR in Road-Users from 5G-V2X Vehicular Connectivity Based on Computational Simulations" Sensors 22, no. 17: 6564. https://doi.org/10.3390/s22176564
APA StyleBonato, M., Tognola, G., Benini, M., Gallucci, S., Chiaramello, E., Fiocchi, S., & Parazzini, M. (2022). Assessment of SAR in Road-Users from 5G-V2X Vehicular Connectivity Based on Computational Simulations. Sensors, 22(17), 6564. https://doi.org/10.3390/s22176564