Data Processing Approaches to Measure Velocity of Electromagnetic Gun on Laser Screen in Complex Environment
Abstract
:1. Introduction
2. Signal Acquisition and Processing of Laser Screen Armature Velocity Measurement
3. Signal Preprocessing of Armature Passing through the Laser Screen
3.1. EEMD Algorithm
3.2. Preprocessing of the Signal of Armature Passing through the Laser Screen Based on EEMD
4. Signal Feature Extraction of Armature Passing through the Laser Screen
4.1. Detection Method of Correlation Algorithm
4.2. Determination of Feature Points and Calculation of Armature Velocity
5. Analysis the Reliability of the Method
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EEDM | Ensemble Empirical Mode Decomposition |
CA | Correlation Algorithm |
EMD | Empirical Mode Decomposition |
IMF | Intrinsic Mode Function |
References
- Xu, W.D.; Yuan, W.Q.; Chen, Y.; Dai, Y.B.; Zhou, Y.; Yang, D.; Yan, P.; Li, J. Sliding electrical contact performance of electromagnetic launcher system in rapid fire mode. Qiangjiguang Yu Lizishu 2012, 24, 668–672. [Google Scholar]
- Zhao, H.; Xu, W.D.; Ma, T.H.; Yuan, W.Q.; Ding, W.J. Arc Interference Suppressing Laser Screen Velocity Measurement of Electromagnetic Gun. Fire Control Command Control 2014, 39, 30–33. [Google Scholar]
- Zhao, D.G.; Zhou, H.C.; Liu, J.; Zhang, B.; Luo, Q.Q. High-precision velocity measuring system for projectiles based on retroreflective laser screen. Optik 2013, 124, 544–548. [Google Scholar] [CrossRef]
- Vargas, R.N.; Veiga, A.C. Empirical Mode Decomposition, Viterbi and Wavelets Applied to Electrocardiogram Noise Removal. Circ. Syst. Signal Process. 2021, 40, 691–718. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J.; Dong, G. Feature extraction of rolling bearing’s early weak fault based on EEMD and tunable Q-factor wavelet transform. Mech. Syst. Signal Process. 2014, 48, 103–119. [Google Scholar] [CrossRef]
- Wang, Y.H.; Cheng, S.H. Boundary Effects for EMD-Based Algorithms. IEEE Signal Process. Lett. 2022, 29, 1032–1036. [Google Scholar] [CrossRef]
- Xu, D.; Shen, G.Q.; Qian, Z.P. Research on separation for mixed signals based on ensemble empirical mode decomposition. J. Mil. Commun. Technol. 2011, 32, 27–32. [Google Scholar]
- Hao, H.Y. Multi component LFM signal detection and parameter estimation based on EEMD-FRFT. Optik 2013, 124, 6093–6096. [Google Scholar] [CrossRef]
- Peng, K.; Guo, H.Y.; Shang, X.Y. EEMD and Multiscale PCA-Based Signal Denoising Method and Its Application to Seismic P-Phase Arrival Picking. Sensors 2021, 21, 5271. [Google Scholar] [CrossRef]
- Wu, Z.H.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Lang, X.; Liu, Y.; Zhang, Y.F.; Xie, L.; Horch, A.; Su, H.Y. Denoising of Industrial Oscillation Data Using EEMD with CCA. IFAC-PapersOnLine 2020, 53, 11662–11668. [Google Scholar] [CrossRef]
- Hao, H.Y.; Li, X.F.; Liu, M.J.; Zhang, F. Time-frequency Feature Extraction Method Based on EEMD and Cohen Class to Suppress Cross Terms. Yingyong Jichu Yu Gongcheng Kexue Xuebao 2012, 20, 1147–1154. [Google Scholar]
- Lee, D.H.; Ahn, J.H.; Koh, B.H. Fault Detection of Bearing Systems through EEMD and Optimization Algorithm. Sensors 2017, 17, 2477. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Hsieh, C.H.; Chen, W.X.; Tan, T.H. ECG Noise Cancellation Based on Grey Spectral Noise Estimation. Sensors 2019, 19, 798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zhang, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Nie, D.H.; Xie, K.; Zhou, F.; Qiao, G. A Correlation Detection Method of Low SNR Based on Multi-Channelization. IEEE Signal Process. Lett. 2020, 27, 1375–1379. [Google Scholar] [CrossRef]
- He, X.; Cao, Q.S. Development and Critical Techniques of Electromagnetic Launch Technology. J. China Acad. Electron. Inf. Technol. 2011, 6, 130–135. [Google Scholar]
- Xu, W.D.; Chen, Y.; Yuan, W.Q.; Zhao, Y.; Wang, X.B.; Yan, P. Design of armature with high muzzle velocity in the small caliber electromagnetic launcher. Qiangjiguang Yu Lizishu 2014, 26, 258–262. [Google Scholar]
Signals | 1st | 2nd | 3rd | 4th | 5th | 6th |
---|---|---|---|---|---|---|
Velocity (m/s) | 991 | 970 | 932 | 888 | 974 | 682 |
Signals | 1st | 2nd | 3rd | 4th | 5th | 6th |
---|---|---|---|---|---|---|
(m/s) | 893.06 | 888.19 | 818.92 | 1259.04 | 1256.00 | 1031.64 |
(m/s) | 894.16 | 889.75 | 819.05 | 1260.85 | 1257.23 | 1031.67 |
(m/s) | 893.61 | 888.97 | 818.99 | 1259.95 | 1256.62 | 1031.66 |
Uncertainty () | 0.55 | 0.78 | 0.07 | 0.91 | 0.62 | 0.02 |
Relative uncertainty () | 0.062% | 0.088% | 0.008% | 0.072% | 0.049% | 0.002% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, H.; Liu, W.; Xu, P.; Zhao, H. Data Processing Approaches to Measure Velocity of Electromagnetic Gun on Laser Screen in Complex Environment. Sensors 2022, 22, 6573. https://doi.org/10.3390/s22176573
Hao H, Liu W, Xu P, Zhao H. Data Processing Approaches to Measure Velocity of Electromagnetic Gun on Laser Screen in Complex Environment. Sensors. 2022; 22(17):6573. https://doi.org/10.3390/s22176573
Chicago/Turabian StyleHao, Huiyan, Wenyu Liu, Peng Xu, and Hui Zhao. 2022. "Data Processing Approaches to Measure Velocity of Electromagnetic Gun on Laser Screen in Complex Environment" Sensors 22, no. 17: 6573. https://doi.org/10.3390/s22176573
APA StyleHao, H., Liu, W., Xu, P., & Zhao, H. (2022). Data Processing Approaches to Measure Velocity of Electromagnetic Gun on Laser Screen in Complex Environment. Sensors, 22(17), 6573. https://doi.org/10.3390/s22176573