Coherence Function and Adaptive Noise Cancellation Performance of an Acoustic Sensor System for Use in Detecting Coronary Artery Disease
Abstract
:1. Introduction
2. Background
2.1. Adaptive Noise Cancellation
2.2. Coherence Function
3. Literature Survey
4. System Model
5. Materials and Methods
6. Results and Discussion
6.1. Single 300 Hz Tone
6.2. Multiple Tones
6.3. Hospital/Clinic Background Noise
6.4. Breathing Noise
6.5. Summary of Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karnath, B.; Thornton, W. Auscultation of the heart. Hosp. Physician 2002, 38, 39–45. [Google Scholar]
- Mahnke, C.B.; Nowalk, A.; Hofkosh, D.; Zuberbuhler, J.R.; Law, Y.M. Comparison of two educational interventions on pediatric resident auscultation skills. Pediatrics 2004, 113, 1331–1335. [Google Scholar] [CrossRef]
- Roy, D.; Sargeant, J.; Gray, J.; Hoyt, B.; Allen, M.; Fleming, M. Helping family physicians improve their cardiac auscultation skills with an interactive CD-ROM. J. Contin. Educ. Health Prof. 2002, 22, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.L. The paediatrician and cardiac auscultation. Paediatr. Child Health 2003, 8, 561–563. [Google Scholar] [CrossRef]
- WHO. Cardiovascular Diseases (CVDs); WHO: Geneva, Switzerland, 2021.
- Raghu, A.; Praveen, D.; Peiris, D.; Tarassenko, L.; Clifford, G. Engineering a mobile health tool for resource-poor settings to assess and manage cardiovascular disease risk: SMARThealth study. BMC Med. Inform. Decis. Mak. 2015, 15, 36. [Google Scholar] [CrossRef]
- Clifford, G.D.; Liu, C.; Moody, B.; Springer, D.; Silva, I.; Li, Q.; Mark, R.G. Classification of normal/abnormal heart sound recordings: The PhysioNet/Computing in Cardiology Challenge 2016. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 609–612. [Google Scholar]
- Kim, P.U.; Lee, Y.; Cho, J.H.; Kim, M.N. Modified adaptive noise canceller with an electrocardiogram to enhance heart sounds in the auscultation sounds. Biomed. Eng. Lett. 2011, 1, 194–198. [Google Scholar] [CrossRef]
- Della Giustina, D.; Riva, M.; Belloni, F.; Malcangi, M. Embedding a multichannel environmental noise cancellation algorithm into an electronic stethoscope. Int. J. Circuits Syst. Signal Process. 2011, 5, 184–191. [Google Scholar]
- Patel, S.B.; Callahan, T.F.; Callahan, M.G.; Jones, J.T.; Graber, G.P.; Foster, K.S.; Glifort, K.; Wodicka, G.R. An adaptive noise reduction stethoscope for auscultation in high noise environments. J. Acoust. Soc. Am. 1998, 103, 2483–2491. [Google Scholar] [CrossRef]
- Dixit, S.; Nagaria, D. LMS adaptive filters for noise cancellation: A review. Int. J. Electr. Comput. Eng. 2017, 7, 2520. [Google Scholar] [CrossRef]
- Fu, Z.F.; He, J. Modal Analysis; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Schmidt, S.E.; Holst-Hansen, C.; Hansen, J.; Toft, E.; Struijk, J.J. Acoustic features for the identification of coronary artery disease. IEEE Trans. Biomed. Eng. 2015, 62, 2611–2619. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.H. Statistical Digital Signal Processing and Modeling; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Elko, G.W. Adaptive noise cancellation with directional microphones. In Proceedings of the 1997 Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, 19–22 October 1997; IEEE: Piscataway, NJ, USA, 1997; p. 4. [Google Scholar]
- Douglas, S.C. Introduction to adaptive filters. In Digital Signal Processing Handbook; Madisetti, V.K., Williams, D.B., Eds.; CRC Press LLC: Boca Raton, FL, USA, 1999. [Google Scholar]
- Correa, A.G.; Laciar, E.; Patiño, H.; Valentinuzzi, M. Artifact removal from EEG signals using adaptive filters in cascade. J. Phys. Conf. Ser. 2007, 90, 012081. [Google Scholar] [CrossRef]
- Tudosa, I.; Adochiei, N. LMS algorithm derivatives used in real-time filtering of ECG signals: A study case on performance evaluation. In Proceedings of the 2012 International Conference and Exposition on Electrical and Power Engineering, Iasi, Romania, 25–27 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 565–570. [Google Scholar]
- Kamenetsky, M.; Widrow, B. A variable leaky LMS adaptive algorithm. In Proceedings of the Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 1, pp. 125–128. [Google Scholar]
- Samanta, P.; Pathak, A.; Mandana, K.; Saha, G. Classification of coronary artery diseased and normal subjects using multi-channel phonocardiogram signal. Biocybern. Biomed. Eng. 2019, 39, 426–443. [Google Scholar] [CrossRef]
- Pathak, A.; Samanta, P.; Mandana, K.; Saha, G. An improved method to detect coronary artery disease using phonocardiogram signals in noisy environment. Appl. Acoust. 2020, 164, 107242. [Google Scholar] [CrossRef]
- Pathak, A.; Samanta, P.; Mandana, K.; Saha, G. Detection of coronary artery atherosclerotic disease using novel features from synchrosqueezing transform of phonocardiogram. Biomed. Signal Process. Control 2020, 62, 102055. [Google Scholar]
Noise under Test | Study | Algorithm | Measurement | Magnitude Squared Coherence | Attenuation [dB] |
---|---|---|---|---|---|
Single 300 Hz Tone | Us | WLMS | Heartbeat | 1 | 35 (full) |
Single 300 Hz Tone | Us | LMS | Heartbeat | 1 | 32 |
Multiple Tones: 200 Hz | Us | WLMS | Heartbeat | 1 | 24.5 |
Multiple Tones: 300 Hz | Us | WLMS | Heartbeat | 1 | 21.4 |
Multiple Tones: 500 Hz | Us | WLMS | Heartbeat | 1 | 20.3 |
Hospital/Clinic Background Noise: 200–500 Hz | Us | WLMS | Heartbeat | 0.3–0.7 | <2 |
Breathing Noise | Us | WLMS | Heartbeat | <0.3 | 0 |
Background voices | [9] | WD | Heartbeat | N/A | 14.04 |
Synthetic chirp | [9] | WD | Heartbeat | N/A | 15.5 |
High Frequency Noise | [9] | WD | Heartbeat | N/A | 16.11 |
100 dB SPL aircraft noise: 100–600 Hz | [10] | LMS | Lung Sounds | N/A | 15 |
100 dB SPL aircraft noise: 450–600 Hz | [10] | NLMS | Lung Sounds | N/A | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fynn, M.; Nordholm, S.; Rong, Y. Coherence Function and Adaptive Noise Cancellation Performance of an Acoustic Sensor System for Use in Detecting Coronary Artery Disease. Sensors 2022, 22, 6591. https://doi.org/10.3390/s22176591
Fynn M, Nordholm S, Rong Y. Coherence Function and Adaptive Noise Cancellation Performance of an Acoustic Sensor System for Use in Detecting Coronary Artery Disease. Sensors. 2022; 22(17):6591. https://doi.org/10.3390/s22176591
Chicago/Turabian StyleFynn, Matthew, Sven Nordholm, and Yue Rong. 2022. "Coherence Function and Adaptive Noise Cancellation Performance of an Acoustic Sensor System for Use in Detecting Coronary Artery Disease" Sensors 22, no. 17: 6591. https://doi.org/10.3390/s22176591
APA StyleFynn, M., Nordholm, S., & Rong, Y. (2022). Coherence Function and Adaptive Noise Cancellation Performance of an Acoustic Sensor System for Use in Detecting Coronary Artery Disease. Sensors, 22(17), 6591. https://doi.org/10.3390/s22176591