Comparing Loose Clothing-Mounted Sensors with Body-Mounted Sensors in the Analysis of Walking
Abstract
:1. Introduction
2. Background
3. Materials and Methodology
3.1. Materials
3.2. Data Collection Procedure
3.3. Data Analysis
3.3.1. Pre-Processing
3.3.2. Sensor-To Vertical Angle Estimation
3.3.3. Extraction of Gait Cycles
3.3.4. Comparison of the Body-Mounted and Clothing-Mounted Sensor Angles
4. Results
4.1. Extracted Gait Cycles
4.2. Sensor-to-Vertical Angles
4.3. Waist, Thigh, and Lower-Shank Sensor-to-Vertical Angles
4.4. Correlation Coefficient Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Zhao, C.; Zheng, B.; Guo, Q.; Duan, X.; Wulamu, A.; Zhang, D. Wearable Devices for Gait Analysis in Intelligent Healthcare. Front. Comput. Sci. 2021, 3, 42. [Google Scholar] [CrossRef]
- Nwanna, O. Validation of an Accelerometry Based Method of Human Gait Analysis. Master’s Thesis, Cleveland State University, Cleveland, OH, USA, 2014. Available online: https://engagedscholarship.csuohio.edu/etdarchive/764/ (accessed on 19 June 2022).
- Dorofeev, N.; Grecheneva, A.; Buzhinsky, V. Assessment of Human Gait Parameters Based on Accelerometry. Biomed. Eng. 2021, 55, 92–97. [Google Scholar] [CrossRef]
- Taraldsen, K.; Helbostad, J.L.; Follestad, T.; Bergh, S.; Selbæk, G.; Saltvedt, I. Gait, physical function, and physical activity in three groups of home-dwelling older adults with different severity of cognitive impairment—A cross-sectional study. BMC Geriatr. 2021, 21, 670. [Google Scholar] [CrossRef] [PubMed]
- Trojaniello, D.; Cereatti, A.; Pelosin, E.; Avanzino, L.; Mirelman, A.; Hausdorff, J.M.; Della Croce, U. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: Application to elderly, hemiparetic, parkinsonian and choreic gait. J. Neuroeng. Rehabil. 2014, 11, 152. [Google Scholar] [CrossRef]
- Muro-De-La-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef]
- Rampp, A.; Barth, J.; Schülein, S.; Gaßmann, K.G.; Klucken, J.; Eskofier, B.M. Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients. IEEE Trans. Biomed. Eng. 2014, 62, 1089–1097. [Google Scholar] [CrossRef]
- Sabatini, A.M.; Martelloni, C.; Scapellato, S.; Cavallo, F. Assessment of walking features from foot inertial sensing. IEEE Trans. Biomed. Eng. 2005, 52, 486–494. [Google Scholar] [CrossRef]
- Tjhai, C.; O’Keefe, K. Using step size and lower limb segment orientation from multiple low-cost wearable inertial/magnetic sensors for pedestrian navigation. Sensors 2019, 19, 3140. [Google Scholar] [CrossRef]
- Patterson, M.R.; Caulfield, B. Using a foot mounted accelerometer to detect changes in gait patterns. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 7471–7475. [Google Scholar]
- Anwary, A.R.; Yu, H.; Vassallo, M. An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors. Sensors 2018, 18, 676. [Google Scholar] [CrossRef]
- McGinnis, R.S.; Redrado, J.B.; Choquette, R.H.; Beynnon, B.D.; Slauterbeck, J.R.; Tourville, T.W.; Toth, M.J. Wearable sensors capture differences in muscle activity and gait patterns during daily activity in patients recovering from ACL reconstruction. In Proceedings of the 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Las Vegas, NV, USA, 4–7 March 2018; pp. 38–41. [Google Scholar]
- Cleland, I.; Nugent, C.D.; Finlay, D.D.; Burns, W.P.; Bougourd, J.; Stevens, K.; Armitage, R. Effects of accelerometer coupling on step counting accuracy in healthy older adults. Health Technol. 2012, 2, 259–270. [Google Scholar] [CrossRef]
- Selles, R.W.; Formanoy, M.A.; Bussmann, J.B.; Janssens, P.J.; Stam, H.J. Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 81–88. [Google Scholar] [CrossRef]
- de Jong, L.; Kerkum, Y.; van Oorschot, W.; Keijsers, N. A single Inertial Measurement Unit on the shank to assess the Shank-to-Vertical Angle. J. Biomech. 2020, 108, 109895. [Google Scholar] [CrossRef]
- Catalfamo, P.; Ghoussayni, S.; Ewins, D. Gait event detection on level ground and incline walking using a rate gyroscope. Sensors 2010, 10, 5683–5702. [Google Scholar] [CrossRef]
- Bastas, G.; Fleck, J.J.; Peters, R.A.; Zelik, K.E. IMU-based gait analysis in lower limb prosthesis users: Comparison of step demarcation algorithms. Gait Posture 2018, 64, 30–37. [Google Scholar] [CrossRef]
- Lee, H.S.; Ryu, H.; Lee, S.U.; Cho, J.S.; You, S.; Park, J.H.; Jang, S.H. Analysis of gait characteristics using hip-knee cyclograms in patients with hemiplegic stroke. Sensors 2021, 21, 7685. [Google Scholar] [CrossRef]
- Chen, X. Human Motion Analysis with Wearable Inertial Sensors. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2013. [Google Scholar]
- Adel, O.; Nafea, Y.; Hesham, A.; Gomaa, W. Gait-based Person Identification using Multiple Inertial Sensors. In Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Paris, France, 7–9 July 2020; pp. 621–628. [Google Scholar]
- Gao, L.; Bourke, A.; Nelson, J. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Med. Eng. Phys. 2014, 36, 779–785. [Google Scholar] [CrossRef]
- Gleadhill, S.; James, D.; Lee, J. Validating Temporal Motion Kinematics from Clothing Attached Inertial Sensors. Proceedings 2018, 2, 304. [Google Scholar] [CrossRef]
- Michael, B.; Howard, M. Activity recognition with wearable sensors on loose clothing. PLoS ONE 2017, 12, e0184642. [Google Scholar] [CrossRef]
- Chiuchisan, I.; Geman, O.; Hagan, M. Wearable sensors in intelligent clothing for human activity monitoring. In Proceedings of the 2019 International Conference on Sensing and Instrumentation in IoT Era (ISSI), Lisbon, Portugal, 29–30 August 2019; pp. 1–4. [Google Scholar]
- Van Laerhoven, K.; Schmidt, A.; Gellersen, H.W. Multi-sensor context aware clothing. In Proceedings of the Sixth International Symposium on Wearable Computers, Seattle, WA, USA, 10 October 2002; pp. 49–56. [Google Scholar]
- Harms, H.; Amft, O.; Tröster, G. Modeling and simulation of sensor orientation errors in garments. In Proceedings of the Fourth International Conference on Body Area Networks, Los Angeles, CA, USA, 1–3 April 2009; pp. 1–8. [Google Scholar]
- Jayasinghe, U.; Harwin, W.S.; Hwang, F. Comparing clothing-mounted sensors with wearable sensors for movement analysis and activity classification. Sensors 2019, 20, 82. [Google Scholar] [CrossRef]
- Hanson, L.; Högberg, D.; Brolin, E. Smart clothing for monitoring gait. In Proceedings of the DHM2020: 6th International Digital Human Modeling Symposium, Skovde, Sweden, 31 August–2 September 2020; Volume 11, p. 197. [Google Scholar]
- Park, S.; Choi, S. Measurement method of determining natural and unnatural gaits using autocorrelation coefficients. In Multimedia Tools and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–19. [Google Scholar]
- Gujarathi, T.; Bhole, K. Gait analysis using imu sensor. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–5. [Google Scholar]
- Cappellini, G.; Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Motor patterns in human walking and running. J. Neurophysiol. 2006, 95, 3426–3437. [Google Scholar] [CrossRef] [Green Version]
- Seel, T.; Raisch, J.; Schauer, T. IMU-based joint angle measurement for gait analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef] [PubMed]
- Gouwanda, D. Comparison of gait symmetry indicators in overground walking and treadmill walking using wireless gyroscopes. J. Mech. Med. Biol. 2014, 14, 1450006. [Google Scholar] [CrossRef]
- Madgwick, S. An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Rep. X-Io Univ. Bristol (UK) 2010, 25, 113–118. [Google Scholar]
- Valenti, R.G.; Dryanovski, I.; Xiao, J. Keeping a good attitude: A quaternion-based orientation filter for IMUs and MARGs. Sensors 2015, 15, 19302–19330. [Google Scholar] [CrossRef] [PubMed]
- Mahony, R.; Hamel, T.; Pflimlin, J.M. Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 2008, 53, 1203–1218. [Google Scholar] [CrossRef]
- Madgwick, S.O.; Harrison, A.J.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the 2011 IEEE international conference on rehabilitation robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7. [Google Scholar]
- Sabatini, A.M. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 2011, 11, 1489–1525. [Google Scholar] [CrossRef]
- Niazmand, K.; Tonn, K.; Zhao, Y.; Fietzek, U.; Schroeteler, F.; Ziegler, K.; Ceballos-Baumann, A.; Lueth, T. Freezing of Gait detection in Parkinson’s disease using accelerometer based smart clothes. In Proceedings of the 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), San Diego, CA, USA, 10–12 November 2011; pp. 201–204. [Google Scholar]
- Cha, Y.; Kim, H.; Kim, D. Flexible piezoelectric sensor-based gait recognition. Sensors 2018, 18, 468. [Google Scholar] [CrossRef]
- Cha, Y.; Nam, K.; Kim, D. Patient posture monitoring system based on flexible sensors. Sensors 2017, 17, 584. [Google Scholar] [CrossRef]
- Weisstein, E.W. Rotation Formula. 2009. Available online: https://mathworld.wolfram.com/ (accessed on 1 June 2022).
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [CrossRef]
- Sarin, H.; Kokkolaras, M.; Hulbert, G.; Papalambros, P.; Barbat, S.; Yang, R.J. Comparing Time Histories for Validation of Simulation Models: Error Measures and Metrics. J. Dyn. Syst. Meas. Control 2010, 132, 061401. [Google Scholar] [CrossRef] [Green Version]
Clothing Type | Waist | Thigh | Lower Shank | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Corr. Coef. | Standing | Walking IC | Walking Shank Vertical | Corr. Coef. | Standing | Walking IC | Walking Shank Vertical | Corr. Coef. | Standing | Walking IC | Walking Shank Vertical | ||
P1 | Jogging trousers | 0.77 | 0.93 | 0.97 | |||||||||
P2 | Loose slack | 0.81 | 0.96 | 0.98 | |||||||||
P3 | Jogging trousers | - | - | - | - | 0.91 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayasinghe, U.; Hwang, F.; Harwin, W.S. Comparing Loose Clothing-Mounted Sensors with Body-Mounted Sensors in the Analysis of Walking. Sensors 2022, 22, 6605. https://doi.org/10.3390/s22176605
Jayasinghe U, Hwang F, Harwin WS. Comparing Loose Clothing-Mounted Sensors with Body-Mounted Sensors in the Analysis of Walking. Sensors. 2022; 22(17):6605. https://doi.org/10.3390/s22176605
Chicago/Turabian StyleJayasinghe, Udeni, Faustina Hwang, and William S. Harwin. 2022. "Comparing Loose Clothing-Mounted Sensors with Body-Mounted Sensors in the Analysis of Walking" Sensors 22, no. 17: 6605. https://doi.org/10.3390/s22176605
APA StyleJayasinghe, U., Hwang, F., & Harwin, W. S. (2022). Comparing Loose Clothing-Mounted Sensors with Body-Mounted Sensors in the Analysis of Walking. Sensors, 22(17), 6605. https://doi.org/10.3390/s22176605