Stochastic Recognition of Human Physical Activities via Augmented Feature Descriptors and Random Forest Model
Abstract
:1. Introduction
- The augmentation of discriminative features from various domains makes the proposed human physical activity recognition model robust in the presence of noisy data. It maintains locally dependent characteristics of the random forest algorithm, providing a novel approach for improving recognition performances across all five benchmark datasets.
- A hybrid feature descriptor model with random forest is proposed to cope with the convoluted patterns of human physical motion activities with improved classification accuracies in all datasets.
- The complex behavior transition, especially in our self-annotated dataset IM-WSHA, requires more time to recognize activities. Therefore, we utilized a higher window size so that our model could work with a minimal number of changes. We also created a self-annotated dataset named Intelligent Media Wearable Smart Home Activities (IM-WSHA), comprising 11 (static and dynamic) daily life log activities, along with divergences in gender, weight, height, and age.
- Additionally, a comprehensive analysis was performed for human physical activities on five public benchmark datasets: IM-WSHA, PAMAP-2, UCI HAR, MobiAct, and MOTIONSENSE. Experimental results reveal an improved recognition rate, which also outperforms other state-of-the-art systems.
2. Related Work
2.1. HPAR via Vision Sensors
2.2. HPAR via Wearable Sensors
3. Material and Methods
3.1. Data Acquisition and Signal Denoising
3.2. Feature Extraction
3.2.1. Statistical Features
3.2.2. Hilbert–Huang Transform (HHT)
3.2.3. Haar Wavelet Transform
3.2.4. Spectral Entropy
- Firstly, the acquired IMU signal’s power spectrum was normalized and denoted as Psp(f).
- To extract modified elements, we utilized the Shannon function to change the normalized power spectrum.
- In the end, the acquired elements were enveloped.
3.2.5. Wavelet Packet Entropy (WPE)
3.3. Feature Selection via Stochastic Gradient Descent (SGD)
3.4. Classification
4. Discussion
4.1. Benchmark Datasets
4.2. Experimental Result and Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Minh Dang, L.; Min, K.; Wang, H.; Jalil Piran, M.; Hee Lee, C.; Moon, H. Sensor-based and vision-based human activity recognition: A comprehensive survey. Pattern Recognit. 2020, 108, 107561. [Google Scholar] [CrossRef]
- Gumaei, A.; Hassan, M.M.; Alelaiwi, A.; Alsalman, H. A Hybrid Deep Learning Model for Human Activity Recognition Using Multimodal Body Sensing Data. IEEE Access 2019, 7, 99152–99160. [Google Scholar] [CrossRef]
- Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity recognition using cell phone accelerometers. In Proceedings of the 17th Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; Volume 12, pp. 74–82. [Google Scholar]
- Habib, M.A.; Mohktar, M.S.; Kamaruzzaman, S.B.; Lim, K.S.; Pin, T.M.; Ibrahim, F. Smartphone-Based Solutions for Fall Detection and Prevention: Challenges and Open Issues. Sensors 2014, 14, 7181–7208. [Google Scholar] [CrossRef]
- Medrano, C.; Igual, R.; Plaza, I.; Castro, M. Detecting falls as novelties in acceleration patterns acquired with smartphones. PLoS ONE 2014, 9, e94811. [Google Scholar]
- Micucci, D.; Mobilio, M.; Napoletano, P.; Tisato, F. Falls as anomalies? An experimental evaluation using smartphone accelerometer data. J. Ambient Intell. Humaniz. Comput. 2017, 8, 87–99. [Google Scholar] [CrossRef]
- Ichikawa, F.; Chipchase, J.; Grignani, R. Where’s the phone? In A study of mobile phone location in public spaces. In Proceedings of the 2005 Mobility Conference on Mobile Technology Applications & Systems Retrieve, Guangzhou, China, 15–17 November 2005; pp. 1–8. [Google Scholar]
- Subasi, A.; Khateeb, K.; Brahimi, T.; Sarirete, A. Human activity recognition using machine learning methods in a smart healthcare environment. In Innovation in Health Informatics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 123–144. [Google Scholar]
- Majumder, S.; Aghayi, E.; Noferesti, M.; Memarzadeh-Tehran, H.; Mondal, T.; Pang, Z.; Deen, M.J. Smart Homes for Elderly Healthcare—Recent Advances and Research Challenges. Sensors 2017, 17, 2496. [Google Scholar] [CrossRef]
- Hassan, M.M.; Uddin, M.Z.; Mohamed, A.; Almogren, A. A robust human activity recognition system using smartphone sensors and deep learning. Futur. Gener. Comput. Syst. 2018, 81, 307–313. [Google Scholar] [CrossRef]
- Yasin, A.; Liu, L.; Li, T.; Wang, J.; Zowghi, D. Design and preliminary evaluation of a cyber Security Requirements Education Game (SREG). Inf. Softw. Technol. 2018, 95, 179–200. [Google Scholar] [CrossRef]
- Bux, A.; Angelov, P.; Habib, Z. Vision Based Human Activity Recognition: A Review. Adv. Comput. Intell. Syst. 2017, 513, 341–371. [Google Scholar]
- Meng, Z.; Zhang, M.; Guo, C.; Fan, Q.; Zhang, H.; Gao, N.; Zhang, Z. Recent Progress in Sensing and Computing Techniques for Human Activity Recognition and Motion Analysis. Electronics 2020, 9, 1357. [Google Scholar] [CrossRef]
- Fatima, R.; Yasin, A.; Liu, L.; Wang, J. How persuasive is a phishing email? A phishing game for phishing awareness. J. Comput. Secur. 2019, 27, 581–612. [Google Scholar] [CrossRef]
- Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural Networks. Appl. Soft Comput. 2018, 62, 915–922. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Simske, S.J.; Liu, J. Human Daily Activity Recognition for Healthcare Using Wearable and Visual Sensing Data. In Proceedings of the IEEE International Conference on Healthcare Informatics (ICHI), Chicago, IL, USA, 4–7 October 2016; pp. 24–31. [Google Scholar]
- Yang, X.; Tian, Y. Super normal vector for human activity recognition with depth cameras. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1028–1039. [Google Scholar] [CrossRef]
- Sharif, M.; Khan, M.A.; Akram, T.; Younus, M.J.; Saba, T.; Rehman, A. A framework of human detection and action recognition based on uniform segmentation and combination of Euclidean distance and joint entropy-based features selection. EURASIP J. Image Video Process. 2017, 2017, 89. [Google Scholar] [CrossRef]
- Patil, C.M.; Jagadeesh, B.; Meghana, M.N. An Approach of Understanding Human Activity Recognition and Detection for Video Surveillance using HOG Descriptor and SVM Classifier. In Proceedings of the 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), Mysore, India, 8–9 September 2017; pp. 481–485. [Google Scholar]
- Ji, X.; Wang, C.; Ju, Z. A New Framework of Human Interaction Recognition Based on Multiple Stage Probability Fusion. Appl. Sci. 2017, 7, 567. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Xiao, J.; Lin, K.H.; Huang, T. Substructure and boundary modeling for continuous action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 1330–1337. [Google Scholar]
- İnce, Ö.F.; Ince, I.F.; Yıldırım, M.E.; Park, J.S.; Song, J.K.; Yoon, B.W. Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor. ETRI J. 2020, 42, 78–89. [Google Scholar] [CrossRef]
- Irvine, N.; Nugent, C.; Zhang, S.; Wang, H.; NG, W.W.Y. Neural Network Ensembles for Sensor-Based Human Activity Recognition Within Smart Environments. Sensors 2020, 20, 216. [Google Scholar] [CrossRef]
- Feng, Z.; Mo, L.; Li, M. A Random Forest-based ensemble method for activity recognition. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5074–5077. [Google Scholar]
- Gupta, P.; Dallas, T. Feature Selection and Activity Recognition System using a Single Tri-axial Accelerometer. IEEE Trans. Biomed. Eng. 2014, 61, 1780–1786. [Google Scholar] [CrossRef]
- Abidine, B.M.H.; Fergani, L.; Fergani, B.; Oussalah, M. The Joint Use of Sequence Features Combination and Modified Weighted SVM for Improving Daily Activity Recognition. Pattern Anal. Appl. 2018, 21, 119–138. [Google Scholar] [CrossRef]
- De Cillis, F.; De Simio, F.; Setola, R. Long-term gait pattern assessment using a tri-axial accelerometer. J. Med. Eng. Technol. 2017, 41, 346–361. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, X.; Chen, W.; Liu, Z.; Li, L. Adaptive multiple classifiers fusion for inertial sensor based human activity recognition. Cluster Comput. 2018, 22, 8141–8154. [Google Scholar] [CrossRef]
- Jung, L.; Cheng, Z. Recognition of daily routines and accidental event with multipoint wearable inertial sensing for seniors home care. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 2324–2389. [Google Scholar]
- Javed, A.R.; Sarwar, M.U.; Khan, S.; Iwendi, C.; Mittal, M.; Kumar, N. Analyzing the Effectiveness and Contribution of Each Axis of Tri-Axial Accelerometer Sensor for Accurate Activity Recognition. Sensors 2020, 20, 2216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholami, S.; Khashe, S. Alexa, Predict My Flight Delay. arXiv 2022, arXiv:2208.09921. [Google Scholar]
- Sinuraya, E.W.; Rizal, A.; Soetrisno, Y.A.A.; Denis. Performance Improvement of Human Activity Recognition based on Ensemble Empirical Mode Decomposition (EEMD). In Proceedings of the 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, 27–28 September 2018. [Google Scholar]
- Schimmack, M.; Nguyen, S.; Mercorelli, P. Anatomy of Haar Wavelet Filter and Its Implementation for Signal Processing. IFAC-PapersOnLine 2016, 49, 99–104. [Google Scholar] [CrossRef]
- Cao, L.; Wang, Y.; Zhang, B.; Jin, Q.; Vasilakos, A.V. GCHAR: An efficient Group-based Context—Aware human activity recognition on smartphone. J. Parallel Distrib. Comput. 2018, 118, 67–80. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Zhou, Q.; Chen, X. Wavelet Packet Entropy Analysis of Resting State Electroencephalogram in Sleep Deprived Mental Fatigue State. In Proceedings of the International Conference on Human-Computer Interaction, Orlando, FL, USA, 26–31 July 2019; pp. 484–494. [Google Scholar]
- Li, Q.; Li, L.; Wang, W.; Li, Q.; Zhong, J. A comprehensive exploration of semantic relation extraction via pre-trained CNNs. Knowl.-Based Syst. 2020, 194, 105488. [Google Scholar] [CrossRef]
- Feng, S.; Shen, S.; Huang, L.; Champion, A.C.; Yu, S.; Wu, C.; Zhang, Y. Three-dimensional robot localization using cameras in wireless multimedia sensor networks. J. Netw. Comput. Appl. 2019, 146, 102425. [Google Scholar] [CrossRef]
- Keskar, N.S.; Socher, R. Improving Generalization Performance by Switching from Adam to SGD. arXiv 2017, arXiv:1712.07628. [Google Scholar]
- Bhargavi, D.; Coyotl, E.P.; Gholami, S. Knock, knock. Who’s there?--Identifying football player jersey numbers with synthetic data. arXiv 2022, arXiv:2203.00734. [Google Scholar]
- Ying, C.; Huang, Z.; Ying, C. Accelerating the image processing by the optimization strategy for deep learning algorithm DBN. Eurasip. J. Wirel. Commun. Netw. 2018, 2018, 232. [Google Scholar] [CrossRef]
- Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 421–436. [Google Scholar]
- Tahir, S.B.U.D. Intelligent Media-Wearable Smart Home Activities (IM-WSHA). 2020. Available online: http://portals.au.edu.pk/imc/Pages/Datasets.aspx (accessed on 5 April 2022).
- Reiss, A.; Stricker, D. Introducing a New Benchmarked Dataset for Activity Monitoring. In Proceedings of the 16th International Symposium on Wearable Computers (ISWC), Newcastle, UK, 18–22 June 2012; pp. 108–109. [Google Scholar]
- Malekzadeh, M.; Clegg, R.G.; Cavallaro, A.; Haddadi, H. Mobile Sensor Data Anonymization. In Proceedings of the International Conference on Internet of Things Design and Implementation, Montreal, QC, Canada, 15–18 April 2019. [Google Scholar]
- Anguita, D.; Ghio, A.; Oneto, L.; Parra Perez, X.; Reyes Ortiz, J.L. A public domain dataset for human activity recognition using smartphones. In Proceedings of the Proceedings of the 21th International European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning; Bruges, Belgium, 24–26 April 2013, pp. 437–442.
- Chatzaki, C.; Pediaditis, M.; Vavoulas, G.; Tsiknakis, M. Human daily activity and fall recognition using a smartphone’s acceleration sensor. In Proceedings of the International Conference on Information and Communication Technologies for Ageing Well and e-Health, Rome, Italy, 21–22 April 2016; pp. 100–118. [Google Scholar]
- Chen, Y.; Shen, C. Performance Analysis of Smartphone-Sensor Behavior for Human Activity Recognition. IEEE Access 2017, 5, 3095–3110. [Google Scholar] [CrossRef]
- Subasi, A.; Dammas, D.H.; Alghamdi, R.D.; Makawi, R.A.; Albiety, E.A.; Brahimi, T.; Sarirete, A. Sensor Based Human Activity Recognition Using AdaBoost Ensemble Classifier. Procedia Comput. Sci. 2018, 140, 104–111. [Google Scholar] [CrossRef]
- Heroy, A.M.; Gill, Z.; Sprague, S. Stationary exercise classification using IMUs and deep learning. SMU Data Sci. Rev. 2020, 3, 1. [Google Scholar]
- Reiss, A.; Stricker, D.; Hendeby, G. Confidence-based multiclass AdaBoost for physical activity monitoring. In Proceedings of the 17th Annual International Symposium on International Symposium on Wearable Computers, Zurich, Switzerland, 8–12 September 2013; pp. 13–20. [Google Scholar]
- Haresamudram, H.; Beedu, A.; Agrawal, V.; Grady, P.L.; Essa, I. Masked Reconstruction Based Self-Supervision for Human Activity Recognition. In Proceedings of the 24th annual International Symposium on Wearable Computers, Cancun, Mexico, 12–16 September 2020. [Google Scholar]
- Murahari, V.S.; Plötz, T. On attention models for human activity recognition. In Proceedings of the 2018 ACM International Symposium on Wearable Computers, Singapore, 8–12 October 2018; pp. 100–103. [Google Scholar]
- Seiffert, M.; Holstein, F.; Schlosser, R.; Schiller, J. Next Generation Cooperative Wearables: Generalized Activity Assessment Computed Fully Distributed Within a Wireless Body Area Network. IEEE Access 2017, 5, 16793–16807. [Google Scholar] [CrossRef]
- Priyadharshini, J.M.H.; Kavitha, S.; Bharathi, B. Classification and analysis of human activities. In Proceedings of the International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017; pp. 1207–1211. [Google Scholar]
- Jalal, A.; Batool, M.; Kim, K. Stochastic recognition of physical activity and healthcare using tri-axial inertial wearable sensors. Appl. Sci. 2020, 10, 7122. [Google Scholar] [CrossRef]
- Khan, W.U.; Ali, Z.; Waqas, M.; Sidhu, G.A.S. Efficient power allocation with individual QoS guarantees in future small-cell networks. AEU-Int. J. Electron. Commun. 2019, 105, 36–41. [Google Scholar] [CrossRef]
- Ferreira, P.J.S.; Cardoso, J.M.P.; Mendes-Moreira, J. KNN prototyping schemes for embedded human activity recognition with online learning. Computers 2020, 9, 96. [Google Scholar] [CrossRef]
- Batool, M.; Jalal, A.; Kim, K. Sensors Technologies for Human Activity Analysis Based on SVM Optimized by PSO Algorithm. In Proceedings of the 2019 International Conference on Applied and Engineering Mathematics, ICAEM 2019—Proceedings, Taxila, Pakistan, 27–29 August 2019. [Google Scholar]
- Wang, J.; Liu, Z.; Wu, Y.; Yuan, J. Mining action let ensemble for action recognition with depth cameras. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1290–1297. [Google Scholar]
- Harandi, M.; Salzmann, M.; Porikli, F. Bregman divergences for infinite dimensional covariance matrices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 23–28 June 2014; pp. 1003–1010. [Google Scholar]
- Colon, L.N.V.; DeLaHoz, Y.; Labrador, M. Human fall detection with smartphones. In Proceedings of the 2014 IEEE Latin-America Conference on Communications (LATINCOM), Cartagena de Indias, Colombia, 5–7 November 2014; pp. 1–7. [Google Scholar]
- Pervaiz, M.; Jalal, A.; Kim, K. Hybrid Algorithm for Multi People Counting and Tracking for Smart Surveillance. 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021. [Google Scholar]
- Casilari, E.; Lora-Rivera, R.; García-Lagos, F. A study on the application of convolutional neural networks to fall detection evaluated with multiple public datasets. Sensors 2020, 20, 1466. [Google Scholar] [CrossRef]
- Compagnon, P.; Lefebvre, G.; Duffner, S.; Garcia, C. Sequence Metric Learning as Synchronization of Recurrent Neural Networks. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Compagnon, P.; Lefebvre, G.; Duffner, S.; Garcia, C. Learning personalized ADL recognition models from few raw data. Artif. Intell. Med. 2020, 107, 101916. [Google Scholar] [CrossRef]
Dataset | Sensors | Sample Rate | Activities | Subjects |
---|---|---|---|---|
IM-WSHA (Self-annotated) | 3-IMUs | 100 Hz | Cooking, drinking, reading a book, walking, etc. | 10 |
PAMAP-2 | 3-IMUs | 9 Hz | Sitting, standing, walking, ironing, cycling, etc. | 9 |
MobiAct | Smartphone | 20 Hz | Standing, walking, jogging, lying | 19 |
UCI-HAR | Accelerometer and gyroscope | 50 Hz | Walking, walking upstairs, walking downstairs | 30 |
MOTIONSENSE | Smartphone | 50 Hz | walking Jogging, downstairs, upstairs, etc. | 24 |
Methods | Random Forest | SVM-RBF | AdaBoost | ||||||
---|---|---|---|---|---|---|---|---|---|
Activities | Precision | Recall | F1 Score | Precision | Recall | F1 Score | Precision | Recall | F1 Score |
W1 | 0.912 | 0.940 | 0.926 | 0.883 | 0.885 | 0.879 | 0.831 | 0.824 | 0.827 |
W2 | 0.898 | 0.890 | 0.894 | 0.875 | 0.868 | 0.864 | 0.827 | 0.815 | 0.820 |
W3 | 0.880 | 0.880 | 0.880 | 0.868 | 0.865 | 0.882 | 0.839 | 0.828 | 0.833 |
W4 | 0.902 | 0.930 | 0.916 | 0.841 | 0.854 | 0.857 | 0.815 | 0.812 | 0.813 |
W5 | 0.918 | 0.900 | 0.909 | 0.909 | 0.903 | 0.911 | 0.846 | 0.831 | 0.838 |
W6 | 0.881 | 0.880 | 0.885 | 0.872 | 0.870 | 0.880 | 0.844 | 0.837 | 0.840 |
W7 | 0.900 | 0.900 | 0.900 | 0.881 | 0.871 | 0.868 | 0.831 | 0.825 | 0.827 |
Activities | Precision | Recall | F1 Score | Precision | Recall | F1 Score | Precision | Recall | F1 Score |
W8 | 0.888 | 0.910 | 0.884 | 0.870 | 0.869 | 0.867 | 0.824 | 0.816 | 0.819 |
W9 | 0.909 | 0.900 | 0.904 | 0.881 | 0.877 | 0.881 | 0.853 | 0.845 | 0.848 |
W10 | 0.900 | 0.910 | 0.905 | 0.882 | 0.879 | 0.877 | 0.829 | 0.819 | 0.823 |
W11 | 0.927 | 0.900 | 0.913 | 0.895 | 0.892 | 0.900 | 0.846 | 0.837 | 0.841 |
Mean | 0.901 | 0.903 | 0.901 | 0.878 | 0.875 | 0.878 | 0.835 | 0.826 | 0.829 |
Methods | Random Forest | SVM-RBF | AdaBoost | ||||||
---|---|---|---|---|---|---|---|---|---|
Activities | Precision | Recall | F1 Score | Precision | Recall | F1 Score | Precision | Recall | F1 Score |
A1 | 0.887 | 0.950 | 0.917 | 0.884 | 0.875 | 0.884 | 0.837 | 0.824 | 0.830 |
A2 | 0.920 | 0.920 | 0.920 | 0.861 | 0.864 | 0.861 | 0.833 | 0.826 | 0.829 |
A3 | 0.927 | 0.940 | 0.933 | 0.894 | 0.873 | 0.894 | 0.841 | 0.883 | 0.861 |
A4 | 0.861 | 0.900 | 0.880 | 0.849 | 0.871 | 0.849 | 0.815 | 0.820 | 0.817 |
A5 | 0.938 | 0.920 | 0.928 | 0.914 | 0.917 | 0.914 | 0.841 | 0.830 | 0.835 |
A6 | 0.908 | 0.910 | 0.909 | 0.897 | 0.884 | 0.897 | 0.838 | 0.829 | 0.833 |
A7 | 0.923 | 0.930 | 0.926 | 0.875 | 0.861 | 0.875 | 0.829 | 0.834 | 0.831 |
A8 | 0.910 | 0.880 | 0.894 | 0.867 | 0.863 | 0.867 | 0.821 | 0.817 | 0.818 |
A9 | 0.946 | 0.920 | 0.933 | 0.877 | 0.881 | 0.877 | 0.831 | 0.827 | 0.828 |
A10 | 0.880 | 0.910 | 0.894 | 0.836 | 0.832 | 0.836 | 0.836 | 0.827 | 0.831 |
A11 | 0.919 | 0.890 | 0.904 | 0.896 | 0.909 | 0.896 | 0.842 | 0.831 | 0.836 |
A12 | 0.937 | 0.930 | 0.933 | 0.892 | 0.903 | 0.892 | 0.846 | 0.838 | 0.841 |
Mean | 0.913 | 0.916 | 0.914 | 0.878 | 0.877 | 0.878 | 0.834 | 0.832 | 0.833 |
Methods | Random Forest | SVM-RBF | AdaBoost | ||||||
---|---|---|---|---|---|---|---|---|---|
Activities | Precision | Recall | F1 Score | Precision | Recall | F1 Score | Precision | Recall | F1 Score |
M1 | 0.941 | 0.960 | 0.950 | 0.885 | 0.888 | 0.886 | 0.788 | 0.796 | 0.791 |
M2 | 0.928 | 0.910 | 0.919 | 0.901 | 0.882 | 0.891 | 0.825 | 0.795 | 0.809 |
M3 | 0.918 | 0.900 | 0.909 | 0.791 | 0.810 | 0.800 | 0.768 | 0.790 | 0.778 |
M4 | 0.911 | 0.920 | 0.915 | 0.769 | 0.750 | 0.759 | 0.745 | 0.702 | 0.722 |
M5 | 0.910 | 0.910 | 0.910 | 0.759 | 0.766 | 0.762 | 0.736 | 0.737 | 0.736 |
M6 | 0.920 | 0.930 | 0.925 | 0.785 | 0.783 | 0.783 | 0.751 | 0.712 | 0.730 |
Mean | 0.921 | 0.922 | 0.921 | 0.815 | 0.813 | 0.814 | 0.768 | 0.755 | 0.761 |
Methods | Random Forest | AdaBoost | SVM-RBF | ||||||
---|---|---|---|---|---|---|---|---|---|
Activities | Precision | Recall | F1 Score | Precision | Recall | F1 Score | Precision | Recall | F1 Score |
U1 | 0.979 | 0.979 | 0.979 | 0.978 | 0.957 | 0.968 | 0.976 | 0.976 | 0.976 |
U2 | 0.968 | 0.978 | 0.973 | 0.967 | 0.978 | 0.973 | 0.976 | 0.964 | 0.970 |
U3 | 0.978 | 0.968 | 0.973 | 0.977 | 0.977 | 0.977 | 0.963 | 1.000 | 0.981 |
U4 | 0.947 | 0.968 | 0.957 | 0.943 | 0.965 | 0.954 | 0.974 | 0.974 | 0.974 |
U5 | 0.979 | 0.959 | 0.969 | 0.988 | 0.977 | 0.983 | 0.975 | 0.963 | 0.969 |
U6 | 0.968 | 0.968 | 0.968 | 0.967 | 0.967 | 0.967 | 0.976 | 0.964 | 0.970 |
Mean | 0.970 | 0.970 | 0.970 | 0.970 | 0.970 | 0.970 | 0.973 | 0.974 | 0.973 |
Methods | Random Forest | AdaBoost | SVM-RBF | ||||||
---|---|---|---|---|---|---|---|---|---|
Activities | Precision | Recall | F1 Score | Precision | Recall | F1 Score | Precision | Recall | F1 Score |
B1 | 0.920 | 0.979 | 0.948 | 0.919 | 0.978 | 0.948 | 0.917 | 0.978 | 0.946 |
B2 | 0.901 | 0.910 | 0.905 | 0.943 | 0.892 | 0.917 | 0.935 | 0.946 | 0.941 |
B3 | 0.959 | 0.939 | 0.949 | 0.933 | 0.944 | 0.939 | 0.955 | 0.955 | 0.955 |
B4 | 0.956 | 0.926 | 0.941 | 0.956 | 0.916 | 0.935 | 0.955 | 0.944 | 0.949 |
B5 | 0.948 | 0.920 | 0.934 | 0.969 | 0.949 | 0.959 | 0.965 | 0.912 | 0.938 |
B6 | 0.919 | 0.910 | 0.915 | 0.936 | 0.957 | 0.946 | 0.976 | 0.922 | 0.949 |
B7 | 0.918 | 0.937 | 0.927 | 0.934 | 0.934 | 0.934 | 0.976 | 0.953 | 0.964 |
B8 | 0.892 | 0.958 | 0.924 | 0.887 | 0.956 | 0.920 | 0.920 | 0.988 | 0.952 |
B9 | 0.918 | 0.928 | 0.923 | 0.957 | 0.967 | 0.962 | 0.908 | 0.963 | 0.935 |
B10 | 0.938 | 0.938 | 0.938 | 0.977 | 0.945 | 0.961 | 0.952 | 0.952 | 0.952 |
B11 | 0.957 | 0.947 | 0.952 | 0.976 | 0.953 | 0.964 | 0.964 | 0.942 | 0.953 |
B12 | 0.968 | 0.968 | 0.968 | 0.964 | 0.964 | 0.964 | 0.964 | 0.964 | 0.964 |
B13 | 1.000 | 0.928 | 0.963 | 0.953 | 0.943 | 0.948 | 1.000 | 0.965 | 0.982 |
Mean | 0.938 | 0.937 | 0.937 | 0.947 | 0.946 | 0.946 | 0.953 | 0.953 | 0.952 |
Activities | MOTIONSENSE | IM-WSHA | PAMAP-2 | MobiAct | UCI-HR |
---|---|---|---|---|---|
Mean MCC value | 0.90 | 0.89 | 0.90 | 0.93 | 0.96 |
Methods | MOTIONSENSE (%) | PAMAP-2 (%) | IM-WSHA (%) | UCI-HR (%) | MobiAct (%) |
---|---|---|---|---|---|
Bidirectional LSTM [49] | - | 64.10 | - | - | - |
AdaBoost [50] | - | 77.78 | 81.30 | - | - |
BERT model [51] | 79.86 | - | - | - | - |
Deep convolutional network [52] | - | 87.50 | - | - | - |
Kinematics features and kernel sliding perceptron [53] | - | 90.49 | 84.50 | - | - |
Ensemble learning [54] | - | 90.11 | - | - | - |
Multi-fused features [55] | 88.25 | - | - | - | - |
KNN classification [56] | - | - | 75.30 | - | - |
Optimized method [57] | 87.50 | - | - | - | - |
Actionlet ensemble [58] | - | - | - | 88.20 | - |
COV-JH-SVM [59] | - | - | - | 80.40 | - |
FTP-SVM [60] | - | - | - | 90.01 | - |
Threshold technique [61] | - | - | - | - | 81.30 |
SVM [62] | - | - | - | - | 77.93 |
CNN [63] | - | - | - | - | 80.71 |
Coupled GRU [64] | - | - | - | 88.50 | - |
SSMN [65] | - | - | - | 81.00 | 87.90 |
Proposed HPAR System | 92.16 | 91.25 | 90.18 | 91.83 | 90.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, S.B.u.d.; Dogar, A.B.; Fatima, R.; Yasin, A.; Shafiq, M.; Khan, J.A.; Assam, M.; Mohamed, A.; Attia, E.-A. Stochastic Recognition of Human Physical Activities via Augmented Feature Descriptors and Random Forest Model. Sensors 2022, 22, 6632. https://doi.org/10.3390/s22176632
Tahir SBud, Dogar AB, Fatima R, Yasin A, Shafiq M, Khan JA, Assam M, Mohamed A, Attia E-A. Stochastic Recognition of Human Physical Activities via Augmented Feature Descriptors and Random Forest Model. Sensors. 2022; 22(17):6632. https://doi.org/10.3390/s22176632
Chicago/Turabian StyleTahir, Sheikh Badar ud din, Abdul Basit Dogar, Rubia Fatima, Affan Yasin, Muhammad Shafiq, Javed Ali Khan, Muhammad Assam, Abdullah Mohamed, and El-Awady Attia. 2022. "Stochastic Recognition of Human Physical Activities via Augmented Feature Descriptors and Random Forest Model" Sensors 22, no. 17: 6632. https://doi.org/10.3390/s22176632
APA StyleTahir, S. B. u. d., Dogar, A. B., Fatima, R., Yasin, A., Shafiq, M., Khan, J. A., Assam, M., Mohamed, A., & Attia, E. -A. (2022). Stochastic Recognition of Human Physical Activities via Augmented Feature Descriptors and Random Forest Model. Sensors, 22(17), 6632. https://doi.org/10.3390/s22176632