Mechanic-Electric-Thermal Directly Coupling Simulation Method of Lamb Wave under Temperature Effect
Abstract
:1. Introduction
2. Simulation Mechanisms of Temperature Influence on LW
2.1. Excitation–Propagation–Sensing Model
2.1.1. Excitation Model
2.1.2. Propagation Model
2.1.3. Sensing Model
2.2. Material Parameters under Temperature Effect
2.3. Piezoelectric Constants under Thermal Stress Effect
3. Simulation Method of LW under Temperature Effect
3.1. Architecture of the Multiphysics Simulation Method
3.1.1. D Geometry and Definitions
3.1.2. Material Parameters Numerical Model of Temperature Effect
3.1.3. Multiphysics Coupling under Temperature Effect
3.1.4. Finite Element Meshes
3.1.5. Stationary and Time-Dependent Solver Settings
3.2. Simulation Results
4. Experimental Verification of the Simulation Method
4.1. Experimental Setup
4.2. Experimental Results
4.3. Comparison between Simulation and Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Implication |
e | Strain vector |
d | Piezoelectric coefficient matrix |
E | Electric field vector |
s | Elastic compliance matrix |
σ | Stress vector |
D | Electric displacement vector |
ε | Dielectric constant matrix |
lact | Diameter of PZT |
tact | Thickness of PZT |
tbond | Thickness of the adhesive layer |
tplate | Thickness of the structure |
Gbond | Shear strength of the adhesive layer |
Young’s modulus of the PZT | |
Eplate | Elastic modulus of the structure |
d31 | Piezoelectric constant |
Vin | Excitation voltage |
Γ | Shear-lag coefficient |
k | Wavenumber |
ω | Angel frequency of the LW |
cL | Velocity of the longitudinal wave |
cT | Velocity of the transverse wave |
ρplate | Density of the structure |
νplate | Poisson’s ratio of the structure |
e33 | Dielectric constant of PZT |
s13 | Elastic coefficient of PZT |
Vout | Response voltage |
C(Γ) | Function of the Γ shear-lag parameter |
I(ΓR) | Bessel function |
ΔT | Relative to the reference temperature |
ΔσT | Thermal stress |
Ex | Excitation signal |
A | Amplitude of excitation signal |
f | Central frequency of excitation signal |
t | Wave propagating duration |
N | Number of cycles within the signal window |
AmpTem | Amplitude of LW signal at corresponding temperature |
AmpT0 | Amplitude of LW signal at −20 °C |
cp | Phase velocity of LW signal |
lp | Distance of LW propagation |
Δt | Time shit of the constant phase of LW signal |
References
- Boller, C.; Chang, F.K.; Fujino, Y. Encyclopedia of Structural Health Monitoring; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Bekas, D.G.; Sharif-Khodaei, Z.; Aliabadi, M.H.F. An innovative diagnostic film for structural health monitoring of metallic and composite structures. Sensors 2018, 18, 2084. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.F.; Ren, Y.Q.; Qiu, L.; Mei, H.F. A multi-response-based wireless impact monitoring network for aircraft composite structures. IEEE Trans. Ind. Electron. 2016, 63, 7712–7722. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, S.F.; Jin, X. On-line prognosis of fatigue cracking via a regularized particle filter and guided wave monitoring. Mech. Syst. Signal Process. 2019, 131, 1–17. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, L.; Luo, Y.J.; Ding, R. A stretchable and large-scale guided wave sensor network for aircraft smart skin of structural health monitoring. Struct. Health Monit. 2021, 20, 861–876. [Google Scholar] [CrossRef]
- Wandowski, T.; Malinowski, P.; Ostachowicz, W. Elastic wave mode conversion phenomenon in glass fiber-reinforced polymers. Int. J. Struct. Integr. 2019, 10, 337–355. [Google Scholar] [CrossRef]
- Yuan, S.F.; Chen, J.; Yang, W.B.; Qiu, L. On-line crack prognosis in attachment lug using Lamb wave-deterministic resampling particle filter-based method. Smart Mater. Struct. 2017, 26, 085016. [Google Scholar] [CrossRef]
- Ren, Y.Q.; Tao, J.Y.; Xue, Z.P. Design of a large-scale piezoelectric transducer network layer and its reliability verification for space structures sensors. Sensors 2020, 20, 4344. [Google Scholar] [CrossRef]
- Xu, Q.H.; Yuan, S.F.; Huang, T.X. Multi-dimensional uniform initialization gaussian mixture model for spar crack quantification under uncertainty. Sensors 2021, 21, 1283. [Google Scholar] [CrossRef]
- Gorgin, R.; Luo, Y.; Wu, Z.J. Environmental and operational conditions effects on lamb wave based structural health monitoring systems: A review. Ultrasonics 2020, 105, 106114. [Google Scholar] [CrossRef]
- Su, Z.Q.; Zhou, C.; Hong, M.; Cheng, L.; Wang, Q.; Qing, X.L. Acousto-ultrasonics-based fatigue damage characterization: Linear versus nonlinear signal features. Mech. Syst. Signal Process. 2014, 45, 225–239. [Google Scholar] [CrossRef]
- Qiu, L.; Fang, F.; Yuan, S.F. Improved density peak clustering-based adaptive Gaussian mixture model for damage monitoring in aircraft structures under time-varying conditions. Mech. Syst. Signal Process. 2019, 126, 281–304. [Google Scholar] [CrossRef]
- Ren, Y.Q.; Qiu, L.; Yuan, S.F.; Fang, F. Gaussian mixture model and delay-and-sum based 4D imaging of damage in aircraft composite structures under time-varying conditions. Mech. Syst. Signal Process. 2020, 135, 106390. [Google Scholar] [CrossRef]
- Singh, P.; Keyvanlou, M.; Sadhu, A. An improved time-varying empirical mode decomposition for structural condition assessment using limited sensors. Eng. Struct. 2021, 232, 111882. [Google Scholar] [CrossRef]
- Qiu, L.; Yuan, S.F.; Chang, F.K.; Bao, Q.; Mei, H.F. On-line updating Gaussian mixture model for aircraft wing spar damage evaluation under time-varying boundary condition. Smart Mater. Struct. 2014, 23, 125001. [Google Scholar] [CrossRef]
- Shen, Y.F.; Giurgiutiu, V. Effective non-reflective boundary for Lamb waves: Theory, finite element implementation, and applications. Wave Motion 2015, 58, 22–41. [Google Scholar] [CrossRef]
- Ge, L.Y.; Wang, X.W.; Wang, F. Accurate modeling of PZT-induced Lamb wave propagation in structures by using a novel spectral finite element method. Smart Mater. Struct. 2014, 23, 95018. [Google Scholar] [CrossRef]
- Hafezi, M.H.; Alebrahim, R.; Kundu, T. Peri-ultrasound for modeling linear and nonlinear ultrasonic response. Ultrasonics 2017, 80, 47–57. [Google Scholar] [CrossRef]
- Radecki, R.; Su, Z.Q.; Cheng, L.; Packo, P.; Staszewski, W.J. Modelling nonlinearity of guided ultrasonic waves in fatigued materials using a nonlinear local interaction simulation approach and a spring model. Ultrasonics 2018, 84, 272–289. [Google Scholar] [CrossRef]
- Shen, Y.F.; Giurgiutiu, V. Combined analytical FEM approach for efficient simulation of Lamb wave damage detection. Ultrasonics 2016, 69, 116–228. [Google Scholar] [CrossRef]
- Gravenkamp, H.; Prager, J.; Saputra, A.A.; Song, C. The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method. J. Acoust. Soc. Am. 2012, 132, 1358–1367. [Google Scholar] [CrossRef]
- Kumar, A.; Kapuria, S. Finite element simulation of axisymmetric elastic and electroelastic wave propagation using local-domain wave packet enrichment. J. Vib. Acoust. 2022, 144, 021011. [Google Scholar] [CrossRef]
- Ajay, R.; Carlos, E.S.C. Effects of elevated temperature on guided-wave structural health monitoring. J. Intell. Mater. Syst. Struct. 2008, 19, 1383–1398. [Google Scholar]
- Radecki, R.; Staszewski, W.J.; Uhl, T. Impact of changing temperature on Lamb wave propagation for damage detection. Key Eng. Mater. 2014, 588, 140–148. [Google Scholar] [CrossRef]
- Dodson, J.C.; Inman, D.J. Thermal sensitivity of Lamb waves for structural health monitoring applications. Ultrasonics 2013, 53, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Lonkar, K.; Janapati, V.; Chang, F.K. A novel physics-based temperature compensation model for structural health monitoring using ultrasonic guided waves. Struct. Health Monit. 2014, 13, 321–342. [Google Scholar] [CrossRef]
- Francesco, L.; Salamone, S. Temperature effects in ultrasonic Lamb wave structural health monitoring systems. J. Acoust. Soc. Am. 2008, 124, 161–174. [Google Scholar]
- Marzani, A.; Salamone, S. Numerical prediction and experimental verification of temperature effect on plate waves generated and received by piezoceramic sensors. Mech. Syst. Signal Process. 2012, 30, 204–217. [Google Scholar] [CrossRef]
- Esfarjani, S.M. Evaluation of effect changing temperature on lamb-wave based structural health monitoring. J. Mech. Energy Eng. 2020, 3, 329–336. [Google Scholar] [CrossRef]
- Attarian, V.A.; Cegla, F.B.; Cawley, P. Long-term stability of guided wave structural health monitoring using distributed adhesively bonded piezoelectric transducers. Struct. Health Monit. 2014, 13, 265–280. [Google Scholar] [CrossRef]
- Lonkar, K.P. Modeling of Piezo-Induced Ultrasonic Wave Propagation for Structural Health Monitoring. Ph.D. Thesis, Stanford University, Palo Alto, CA, USA, 2013. [Google Scholar]
- Han, S.J.; Palazotto, A.N.; Leakeas, C.L. Finite-element analysis of Lamb wave propagation in a thin aluminum plate. J. Aerospace Eng. 2018, 22, 185–197. [Google Scholar] [CrossRef]
- Yule, L.; Zaghari, B.; Harris, N.; Hill, M. Modelling and validation of a guided acoustic wave temperature monitoring system. Sensors 2021, 21, 7390. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.Q. Research on the Propagation and Simulation of Lamb Wave under Temperature Effect. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2020. [Google Scholar]
- Giurgiutiu, V. Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J. Intell. Mater. Syst. Struct. 2005, 16, 291–305. [Google Scholar] [CrossRef]
- Brammer, J.A.; Percival, C.M. Elevated-temperature elastic moduli of 2024 aluminum obtained by a laser-pulse technique. Exp. Mech. 1970, 10, 245–250. [Google Scholar] [CrossRef]
- Barakat, S. The Effects of Low Temperature and Vacuum on the Fracture Behavior of Organosilicate Thin Films. Masters’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2011. [Google Scholar]
- Lee, H.J.; Saravanos, D.A. The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates; NASA Technical Memorandum; NASA: Brook Park, OH, USA, 1997; pp. 1–20. Available online: https://ntrs.nasa.gov/citations/19980017194. (accessed on 2 May 2022).
- Qiu, L.; Yan, X.X.; Lin, X.D.; Yuan, S.F. Multiphysics simulation method of lamb wave propagation with piezoelectric transducers under load condition. Chin. J. Aeronaut. 2019, 32, 1071–1086. [Google Scholar] [CrossRef]
- Yang, C.H.; Ye, L.; Su, Z.Q.; Bannister, M. Some aspects of numerical simulation for Lamb wave propagation in composite laminates. Compos. Struct. 2006, 75, 267–275. [Google Scholar] [CrossRef]
- Qiu, L.; Yuan, S.F.; Wang, Q.; Sun, Y.J.; Yang, W.W. Design and experiment of PZT network-based structural health monitoring scanning system. Chin. J. Aeronaut. 2009, 22, 505–512. [Google Scholar]
- Nader, G.; Carlos, E.; Silva, N.; Adamowski, J.C. Effective damping value of piezoelectric transducer determined by experimental techniques and numerical analysis. ABCM Symp. Ser. Mechatron. 2004, 1, 271–279. [Google Scholar]
LW Propagation Characteristics | Expressions | Temperature Effects |
---|---|---|
Propagation velocity | Temperature affects the propagation velocity of LW by influencing the elastic modulus , density ρplate, and Poisson’s ratio νplate of the structure. | |
Response amplitude | Temperature affects the LW amplitude by influencing piezoelectric coefficient d31 including the effects of thermal stress, the dielectric constant e33 and elastic flexibility coefficient s13 of the PZT, shear modulus Gbond and shear-lag constant of the adhesive layer. |
Structure | Geometry | Excitation Signal Frequency | Temperature |
---|---|---|---|
2024 Aluminum plate | 500 mm × 500 mm × 2 mm (length × width × thickness) | 150 kHz, 200 kHz | −20 °C to 60 °C |
Material | Parameter | Value |
---|---|---|
2024 Aluminum plate | Elastic modulus | |
Poisson’s ratio | ||
Density | 2700 (kg/m3) | |
Coefficient of thermal expansion | 23.1 × 10−6(/K) | |
Adhesive | Shear modulus | 0.3 |
Poisson’s ratio | ||
Density | 1110 (kg/m3) | |
Coefficient of thermal expansion | 54 × 10−6 (/K) | |
PZT-5A | Piezoelectric constant | |
Relative permittivity | ||
Coefficient of thermal expansion | 3 × 10−6 (/K) |
3 × 10−5 s | 4.5 × 10−5 s | 6 × 10−5 s | |
---|---|---|---|
−20 °C | |||
20 °C | |||
60 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Xue, Z.; Zheng, H.; Qiu, L.; Xiong, K. Mechanic-Electric-Thermal Directly Coupling Simulation Method of Lamb Wave under Temperature Effect. Sensors 2022, 22, 6647. https://doi.org/10.3390/s22176647
Yang X, Xue Z, Zheng H, Qiu L, Xiong K. Mechanic-Electric-Thermal Directly Coupling Simulation Method of Lamb Wave under Temperature Effect. Sensors. 2022; 22(17):6647. https://doi.org/10.3390/s22176647
Chicago/Turabian StyleYang, Xiaofei, Zhaopeng Xue, Hui Zheng, Lei Qiu, and Ke Xiong. 2022. "Mechanic-Electric-Thermal Directly Coupling Simulation Method of Lamb Wave under Temperature Effect" Sensors 22, no. 17: 6647. https://doi.org/10.3390/s22176647
APA StyleYang, X., Xue, Z., Zheng, H., Qiu, L., & Xiong, K. (2022). Mechanic-Electric-Thermal Directly Coupling Simulation Method of Lamb Wave under Temperature Effect. Sensors, 22(17), 6647. https://doi.org/10.3390/s22176647