Investigating Methods for Cognitive Workload Estimation for Assistive Robots
Abstract
:1. Introduction
- We analyzed data from a multi-modal, multi-task controlled driving simulation environment that involves multimodal interaction of several physiological signal modalities including eye gaze (pupillometry), EEG, and arterial blood pressure.
- Our numerical results and statistical analysis demonstrated the effectiveness of pupil diameter in assessing cognitive workload. Particularly, our empirical results indicated that pupil diameter outperforms other physiological signals in cognitive workload prediction tasks regardless of the learning models.
- Additionally, we showed that combining several physiological signal modalities does not provide a substantial increase in workload classification performance compared to using just eye gaze alone. This suggested that eye gaze is a sufficient modality for assessing cognitive workload in interactive, multi-modal, multi-task settings.
2. Background and Related Work
2.1. EEG
2.2. HRV and BPV
2.3. Eye Gaze
2.4. Combination of Multiple Signal Modalities
2.5. Machine Learning for Detecting and Assessing Cognitive Workload
3. Experimental Data
3.1. Eye Gaze Recording
3.2. EEG Recording
3.3. Arterial Blood Pressure Recording
4. Methods
4.1. Workload Evaluation
4.2. Pupillometry
4.3. Electroencephalography
4.4. Arterial Blood Pressure
4.4.1. HRV
4.4.2. BPV
4.5. Extracted Features of Pupillometry and EEG
4.5.1. Power Spectral Density of EEG
4.5.2. Extracted Feature for Pupillometry
4.5.3. Combinations of Extracted Features
5. Machine Learning Methodologies
5.1. k-Nearest Neighbor
5.2. Naive Bayes
5.3. Random Forest
5.4. Support-Vector Machine
5.5. Neural Network-Based Models (NNM)
5.5.1. Multi-Layer Perceptron
5.5.2. Additional Time-Series Learning Models
6. Results and Discussion
6.1. Statistical Analysis of Physiological Signals
6.1.1. Pupillometry
6.1.2. Electroencephalography
6.1.3. Heart Rate Variability
6.1.4. Blood Pressure Variability
6.2. Classification Performance
6.2.1. Single-Modality Learning
6.2.2. Multi-Modality Learning
7. Conclusions
8. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howard, Z.L.; Innes, R.; Eidels, A.; Loft, S. Using Past and Present Indicators of Human Workload to Explain Variance in Human Performance. Psychon. Bull. Rev. 2021, 28, 1923–1932. [Google Scholar] [CrossRef] [PubMed]
- Heard, J.; Harriott, C.E.; Adams, J.A. A survey of workload assessment algorithms. IEEE Trans. Hum.-Mach. Syst. 2018, 48, 434–451. [Google Scholar] [CrossRef]
- Berka, C.; Levendowski, D.J.; Lumicao, M.N.; Yau, A.; Davis, G.; Zivkovic, V.T.; Olmstead, R.E.; Tremoulet, P.D.; Craven, P.L. EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 2007, 78, B231–B244. [Google Scholar] [PubMed]
- So, W.K.; Wong, S.W.; Mak, J.N.; Chan, R.H. An evaluation of mental workload with frontal EEG. PLoS ONE 2017, 12, e0174949. [Google Scholar] [CrossRef]
- May, J.G.; Kennedy, R.S.; Williams, M.C.; Dunlap, W.P.; Brannan, J.R. Eye movement indices of mental workload. Acta Psychol. 1990, 75, 75–89. [Google Scholar] [CrossRef]
- Greef, T.D.; Lafeber, H.; Oostendorp, H.V.; Lindenberg, J. Eye movement as indicators of mental workload to trigger adaptive automation. In Proceedings of the International Conference on Foundations of Augmented Cognition, San Diego, CA, USA, 19–24 July 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 219–228. [Google Scholar]
- Liu, Y.; Ayaz, H.; Shewokis, P.A. Multisubject “learning” for mental workload classification using concurrent EEG, fNIRS, and physiological measures. Front. Hum. Neurosci. 2017, 11, 389. [Google Scholar] [CrossRef]
- Scheutz, M.; Aeron, S.; Aygun, A.; de Ruiter, J.; Fantini, S.; Fernandez, C.; Haga, Z.; Nguyen, T.; Lyu, B.; Rife, J. Estimating Individual Cognitive States from a Mixture of Physiological and Brain Signals. Trends Cogn. Sci. 2022. under review. [Google Scholar]
- Aygun, A.; Lyu, B.; Nguyen, T.; Haga, Z.; Aeron, S.; Scheutz, M. Cognitive Workload Assessment via Eye Gaze and EEG in an Interactive Multi-Modal Driving Task. In Proceedings of the 24th ACM International Conference on Multi-Modal Interaction, Bengaluru, India, 7–11 November 2022. [Google Scholar]
- Grimes, D.; Tan, D.S.; Hudson, S.E.; Shenoy, P.; Rao, R.P. Feasibility and pragmatics of classifying working memory load with an electroencephalograph. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; ACM: New York, NY, USA, 2008; pp. 835–844. [Google Scholar]
- Paas, F.; Tuovinen, J.E.; Tabbers, H.; Van Gerven, P.W. Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 2003, 38, 63–71. [Google Scholar] [CrossRef]
- Abd Rahman, N.I.; Dawal, S.Z.M.; Yusoff, N. Ageing drivers’ mental workload in real-time driving task based on subjective and objective measures. J. Eng. Res. 2021, 9, 272–284. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar]
- Reid, G.B.; Nygren, T.E. The subjective workload assessment technique: A scaling procedure for measuring mental workload. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 185–218. [Google Scholar]
- Tsang, P.S.; Velazquez, V.L. Diagnosticity and multidimensional subjective workload ratings. Ergonomics 1996, 39, 358–381. [Google Scholar] [CrossRef]
- Tao, D.; Tan, H.; Wang, H.; Zhang, X.; Qu, X.; Zhang, T. A systematic review of physiological measures of mental workload. Int. J. Environ. Res. Public Health 2019, 16, 2716. [Google Scholar] [CrossRef] [Green Version]
- Lei, S.; Roetting, M. Influence of task combination on EEG spectrum modulation for driver workload estimation. Hum. Factors 2011, 53, 168–179. [Google Scholar] [CrossRef]
- Ryu, K.; Myung, R. Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic. Int. J. Ind. Ergon. 2005, 35, 991–1009. [Google Scholar] [CrossRef]
- Qu, H.; Shan, Y.; Liu, Y.; Pang, L.; Fan, Z.; Zhang, J.; Wanyan, X. Mental workload classification method based on EEG independent component features. Appl. Sci. 2020, 10, 3036. [Google Scholar] [CrossRef]
- Reddy, A.G.; Narava, S. Artifact removal from EEG signals. Int. J. Comput. Appl. 2013, 77, 17–19. [Google Scholar]
- Jiang, X.; Bian, G.B.; Tian, Z. Removal of artifacts from EEG signals: A review. Sensors 2019, 19, 987. [Google Scholar] [CrossRef]
- Rogasch, N.C.; Biabani, M.; Mutanen, T.P. Designing and comparing cleaning pipelines for TMS-EEG data: A theoretical overview and practical example. J. Neurosci. Methods 2022, 371, 109494. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Hoover, A.; Singh, A.; Fishel-Brown, S.; Muth, E. Real-time detection of workload changes using heart rate variability. Biomed. Signal Process. Control 2012, 7, 333–341. [Google Scholar] [CrossRef]
- Delliaux, S.; Delaforge, A.; Deharo, J.C.; Chaumet, G. Mental workload alters heart rate variability, lowering non-linear dynamics. Front. Physiol. 2019, 10, 565. [Google Scholar] [CrossRef]
- Shakouri, M.; Ikuma, L.H.; Aghazadeh, F.; Nahmens, I. Analysis of the sensitivity of heart rate variability and subjective workload measures in a driving simulator: The case of highway work zones. Int. J. Ind. Ergon. 2018, 66, 136–145. [Google Scholar] [CrossRef]
- Stuiver, A.; Brookhuis, K.A.; de Waard, D.; Mulder, B. Short-term cardiovascular measures for driver support: Increasing sensitivity for detecting changes in mental workload. Int. J. Psychophysiol. 2014, 92, 35–41. [Google Scholar] [CrossRef]
- Hjortskov, N.; Rissén, D.; Blangsted, A.K.; Fallentin, N.; Lundberg, U.; Søgaard, K. The effect of mental stress on heart rate variability and blood pressure during computer work. Eur. J. Appl. Physiol. 2004, 92, 84–89. [Google Scholar] [CrossRef]
- Ahlstrom, U.; Friedman-Berg, F.J. Using eye movement activity as a correlate of cognitive workload. Int. J. Ind. Ergon. 2006, 36, 623–636. [Google Scholar] [CrossRef]
- Palinko, O.; Kun, A.L.; Shyrokov, A.; Heeman, P. Estimating cognitive load using remote eye tracking in a driving simulator. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, Austin, TX, USA, 22–24 March 2010; ACM: New York, NY, USA, 2010; pp. 141–144. [Google Scholar]
- Palinko, O.; Kun, A.L. Exploring the effects of visual cognitive load and illumination on pupil diameter in driving simulators. In Proceedings of the Symposium on Eye Tracking Research and Applications, Santa Barbara, CA, USA, 28–30 March 2012; ACM: New York, NY, USA, 2012; pp. 413–416. [Google Scholar]
- Beatty, J. Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol. Bull. 1982, 91, 276. [Google Scholar] [CrossRef]
- Pfleging, B.; Fekety, D.K.; Schmidt, A.; Kun, A.L. A model relating pupil diameter to mental workload and lighting conditions. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; ACM: New York, NY, USA, 2016; pp. 5776–5788. [Google Scholar]
- Das, S.; Prudhvi, K.; Maiti, J. Assessing Mental Workload Using Eye Tracking Technology and Deep Learning Models. In Handbook of Intelligent Computing and Optimization for Sustainable Development; Wiley Online Library: New Jersey, NJ, USA, 2022; pp. 1–11. [Google Scholar]
- Bitkina, O.V.; Park, J.; Kim, H.K. The ability of eye-tracking metrics to classify and predict the perceived driving workload. Int. J. Ind. Ergon. 2021, 86, 103193. [Google Scholar] [CrossRef]
- Pang, L.; Fan, Y.; Deng, Y.; Wang, X.; Wang, T. Mental Workload Classification By Eye Movements In Visual Search Tasks. In Proceedings of the 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Chengdu, China, 17–19 October 2020; pp. 29–33. [Google Scholar]
- Kosch, T.; Hassib, M.; Buschek, D.; Schmidt, A. Look into my eyes: Using pupil dilation to estimate mental workload for task complexity adaptation. In Proceedings of the Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–16 April 2018; ACM: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Appel, T.; Scharinger, C.; Gerjets, P.; Kasneci, E. Cross-subject workload classification using pupil-related measures. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, Warsaw, Poland, 14–17 June 2018; ACM: New York, NY, USA, 2018; pp. 1–8. [Google Scholar]
- Khedher, A.B.; Jraidi, I.; Frasson, C. Predicting learners’ performance using EEG and eye tracking features. In Proceedings of the Thirty-Second International Flairs Conference, Sarasota, FL, USA, 19–22 May 2019. [Google Scholar]
- Rozado, D.; Dunser, A. Combining EEG with pupillometry to improve cognitive workload detection. Computer 2015, 48, 18–25. [Google Scholar] [CrossRef]
- Christensen, J.C.; Estepp, J.R.; Wilson, G.F.; Russell, C.A. The effects of day-to-day variability of physiological data on operator functional state classification. NeuroImage 2012, 59, 57–63. [Google Scholar] [CrossRef]
- Aghajani, H.; Garbey, M.; Omurtag, A. Measuring mental workload with EEG+ fNIRS. Front. Hum. Neurosci. 2017, 11, 359. [Google Scholar] [CrossRef]
- Liu, Y.; Ayaz, H.; Shewokis, P.A. Mental workload classification with concurrent electroencephalography and functional near-infrared spectroscopy. Brain-Comput. Interfaces 2017, 4, 175–185. [Google Scholar] [CrossRef]
- Herff, C.; Fortmann, O.; Tse, C.Y.; Cheng, X.; Putze, F.; Heger, D.; Schultz, T. Hybrid fNIRS-EEG based discrimination of 5 levels of memory load. In Proceedings of the 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, France, 22–24 April 2015; pp. 5–8. [Google Scholar]
- Borys, M.; Plechawska-Wójcik, M.; Wawrzyk, M.; Wesołowska, K. Classifying cognitive workload using eye activity and EEG features in arithmetic tasks. In Proceedings of the International Conference on Information and Software Technologies, Druskininkai, Lithuania, 12–14 October 2017; Springer: Cham, Switerland, 2017; pp. 90–105. [Google Scholar]
- Coffey, E.B.; Brouwer, A.M.; van Erp, J.B. Measuring workload using a combination of electroencephalography and near infrared spectroscopy. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2012, 56, 1822–1826. [Google Scholar]
- Debie, E.; Rojas, R.F.; Fidock, J.; Barlow, M.; Kasmarik, K.; Anavatti, S.; Garratt, M.; Abbass, H.A. Multimodal fusion for objective assessment of cognitive workload: A review. IEEE Trans. Cybern. 2019, 51, 1542–1555. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.A.; Johnson, M.K.; Jaquess, K.J.; Oh, H.; Lo, L.C.; Gentili, R.J.; Hatfield, B.D. Quantifying cognitive workload in simulated flight using passive, dry EEG measurements. IEEE Trans. Cogn. Dev. Syst. 2016, 10, 373–383. [Google Scholar] [CrossRef]
- Cheema, B.S.; Samima, S.; Sarma, M.; Samanta, D. Mental workload estimation from EEG signals using machine learning algorithms. In Proceedings of the International Conference on Engineering Psychology and Cognitive Ergonomics, Las Vegas, NV, USA, 15–20 July 2018; Springer: Cham, Switerland, 2018; pp. 265–284. [Google Scholar]
- Kaczorowska, M.; Plechawska-Wójcik, M.; Tokovarov, M. Interpretable machine learning models for three-way classification of cognitive workload levels for eye-tracking features. Brain Sci. 2021, 11, 210. [Google Scholar] [CrossRef]
- Hope, R.M.; Wang, Z.; Wang, Z.; Ji, Q.; Gray, W.D. Workload classification across subjects using EEG. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2011, 55, 202–206. [Google Scholar]
- Duraisingam, A.; Palaniappan, R.; Andrews, S. Cognitive task difficulty analysis using EEG and data mining. In Proceedings of the 2017 Conference on Emerging Devices and Smart Systems (ICEDSS), Mallasamudram, India, 3–4 March 2017; pp. 52–57. [Google Scholar]
- Pandey, V.; Choudhary, D.K.; Verma, V.; Sharma, G.; Singh, R.; Chandra, S. Mental Workload Estimation Using EEG. In Proceedings of the 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Bangalore, India, 26–27 November 2020; pp. 83–86. [Google Scholar]
- Almogbel, M.A.; Dang, A.H.; Kameyama, W. Cognitive workload detection from raw EEG-signals of vehicle driver using deep learning. In Proceedings of the 2019 21st International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, 17–20 February 2019; pp. 1–6. [Google Scholar]
- Dimitrakopoulos, G.N.; Kakkos, I.; Dai, Z.; Lim, J.; de Souza, J.J.; Bezerianos, A.; Sun, Y. Task-independent mental workload classification based upon common multiband EEG cortical connectivity. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1940–1949. [Google Scholar] [CrossRef]
- Mazher, M.; Abd Aziz, A.; Malik, A.S.; Amin, H.U. An EEG-based cognitive load assessment in multimedia learning using feature extraction and partial directed coherence. IEEE Access 2017, 5, 14819–14829. [Google Scholar] [CrossRef]
- Yu, K.; Prasad, I.; Mir, H.; Thakor, N.; Al-Nashash, H. Cognitive workload modulation through degraded visual stimuli: A single-trial EEG study. J. Neural Eng. 2015, 12, 046020. [Google Scholar] [CrossRef]
- Singh, U.; Ahirwal, M.K. Mental Workload Classification for Multitasking Test using Electroencephalogram Signal. In Proceedings of the 2021 IEEE International Conference on Technology, Research, and Innovation for Betterment of Society (TRIBES), Raipur, India, 17–19 December 2021; pp. 1–6. [Google Scholar]
- Yin, Z.; Zhang, J. Cross-session classification of mental workload levels using EEG and an adaptive deep learning model. Biomed. Signal Process. Control 2017, 33, 30–47. [Google Scholar] [CrossRef]
- Zarjam, P.; Epps, J.; Lovell, N.H. Beyond Subjective Self-Rating: EEG Signal Classification of Cognitive Workload. IEEE Trans. Auton. Ment. Dev. 2015, 7, 301–310. [Google Scholar] [CrossRef]
- Hefron, R.G.; Borghetti, B.J.; Christensen, J.C.; Kabban, C.M.S. Deep long short-term memory structures model temporal dependencies improving cognitive workload estimation. Pattern Recognit. Lett. 2017, 94, 96–104. [Google Scholar] [CrossRef]
- Rahman, H.; Ahmed, M.U.; Barua, S.; Funk, P.; Begum, S. Vision-based driver’s cognitive load classification considering eye movement using machine learning and deep learning. Sensors 2021, 21, 8019. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yin, Z.; Wang, Y.; Zhang, W.; Wang, Y.; Zhang, J. Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders. Comput. Biol. Med. 2019, 109, 159–170. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Peng, X. Recognition of driver’s mental workload based on physiological signals, a comparative study. Biomed. Signal Process. Control 2022, 71, 103094. [Google Scholar] [CrossRef]
- Islam, M.R.; Barua, S.; Ahmed, M.U.; Begum, S.; Flumeri, G.D. Deep learning for automatic EEG feature extraction: An application in drivers’ mental workload classification. In Proceedings of the International Symposium on Human Mental Workload: Models and Applications, Rome, Italy, 14–15 November 2019; Springer: Cham, Switerland, 2019; pp. 121–135. [Google Scholar]
- Charles, R.L.; Nixon, J. Measuring mental workload using physiological measures: A systematic review. Appl. Ergon. 2019, 74, 221–232. [Google Scholar] [CrossRef]
- Saeedpour-Parizi, M.R.; Hassan, S.E.; Shea, J.B. Pupil diameter as a biomarker of effort in goal-directed gait. Exp. Brain Res. 2020, 238, 2615–2623. [Google Scholar] [CrossRef]
- Wildemeersch, D.; Peeters, N.; Saldien, V.; Vercauteren, M.; Hans, G. Pain assessment by pupil dilation reflex in response to noxious stimulation in anaesthetized adults. Acta Anaesthesiol. Scand. 2018, 62, 1050–1056. [Google Scholar] [CrossRef]
- Smallwood, J.; Brown, K.S.; Tipper, C.; Giesbrecht, B.; Franklin, M.S.; Mrazek, M.D.; Carlson, J.M.; Schooler, J.W. Pupillometric evidence for the decoupling of attention from perceptual input during offline thought. PLoS ONE 2011, 6, e18298. [Google Scholar] [CrossRef]
- Prieur-Coloma, Y.; Reinoso-Leblanch, R.A.; Mayeta-Revilla, L.; Delisle-Rodríguez, D.; Bastos, T.; López-Delis, A.; Balart-Fernández, L.; Falk, T.H. Enhancing shoulder pre-movements recognition through EEG Riemannian covariance matrices for a BCI-based exoskeleton. In Proceedings of the 2020 IEEE International Conference on Human-Machine Systems (ICHMS), Rome, Italy, 7–9 September 2020; pp. 1–3. [Google Scholar]
- Yu, Y. A study on the classification of left-and righthanded eeg signals based on motor imagination. In Proceedings of the 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 25–27 August 2020; pp. 28–31. [Google Scholar]
- Li, R.; Principe, J.C. Blinking artifact removal in cognitive EEG data using ICA. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 5273–5276. [Google Scholar]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Cerliani, M. Tsmoothie. 2021. Available online: https://github.com/cerlymarco/tsmoothie (accessed on 15 June 2022).
- Chen, H.; Erol, Y.; Shen, E.; Russell, S. Probabilistic model-based approach for heart beat detection. Physiol. Meas. 2016, 37, 1404. [Google Scholar] [CrossRef]
- De Morais Borges, G.; Brusamarello, V. Bayesian fusion of multiple sensors for reliable heart rate detection. In Proceedings of the 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Montevideo, Uruguay, 12–15 May 2014; pp. 1310–1313. [Google Scholar]
- Dias, D.; Silva, L.; Katayama, P.; Silva, C.; Salgado, H.; Fazan, R. Correlation between RR, inter-systolic and inter-diastolic intervals and their differences for the analysis of spontaneous heart rate variability. Physiol. Meas. 2016, 37, 1120. [Google Scholar] [CrossRef] [PubMed]
- Avram, R.; Tison, G.H.; Aschbacher, K.; Kuhar, P.; Vittinghoff, E.; Butzner, M.; Runge, R.; Wu, N.; Pletcher, M.J.; Marcus, G.M.; et al. Real-world heart rate norms in the Health eHeart study. NPJ Digit. Med. 2019, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Gao, H.; Wang, W.; Qu, J.; Chen, L. Study on the identification of irritability emotion based on the percentage change in pupil size. In Proceedings of the 2020 2nd International Conference on Image, Video and Signal Processing, Singapore, 20–22 March 2020; ACM: New York, NY, USA, 2020; pp. 20–24. [Google Scholar]
- Ameera, A.; Saidatul, A.; Ibrahim, Z. Analysis of EEG spectrum bands using power spectral density for pleasure and displeasure state. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK , 2019; Volume 557, p. 012030. [Google Scholar]
- Ng, W.B.; Saidatul, A.; Chong, Y.; Ibrahim, Z. PSD-based features extraction for EEG signal during typing task. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 557, p. 012032. [Google Scholar]
- Lim, W.L.; Sourina, O.; Liu, Y.; Wang, L. EEG-based mental workload recognition related to multitasking. In Proceedings of the 2015 10th International Conference on Information, Communications and Signal Processing (ICICS), Singapore, 2–4 December 2015; pp. 1–4. [Google Scholar]
- Matthews, G.; Reinerman-Jones, L.; Abich IV, J.; Kustubayeva, A. Metrics for individual differences in EEG response to cognitive workload: Optimizing performance prediction. Personal. Individ. Differ. 2017, 118, 22–28. [Google Scholar] [CrossRef]
- Chikhi, S.; Matton, N.; Blanchet, S. EEG power spectral measures of cognitive workload: A meta-analysis. Psychophysiology 2022, 59, e14009. [Google Scholar] [CrossRef]
- Foroozan, F.; Mohan, M.; Wu, J.S. Robust beat-to-beat detection algorithm for pulse rate variability analysis from wrist photoplethysmography signals. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 2136–2140. [Google Scholar]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV–heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Parati, G.; Stergiou, G.S.; Dolan, E.; Bilo, G. Blood pressure variability: Clinical relevance and application. J. Clin. Hypertens. 2018, 20, 1133–1137. [Google Scholar] [CrossRef]
- Xia, Y.; Wu, D.; Gao, Z.; Liu, X.; Chen, Q.; Ren, L.; Wu, W. Association between beat-to-beat blood pressure variability and vascular elasticity in normal young adults during the cold pressor test. Medicine 2017, 96, e6000. [Google Scholar] [CrossRef]
- Tian, G.; Xiong, L.; Leung, H.; Soo, Y.; Leung, T.; Wong, L.K.S. Beat-to-beat blood pressure variability and heart rate variability in relation to autonomic dysregulation in patients with acute mild-moderate ischemic stroke. J. Clin. Neurosci. 2019, 64, 187–193. [Google Scholar] [CrossRef]
- Zawadka-Kunikowska, M.; Rzepiński, Ł.; Newton, J.L.; Zalewski, P.; Słomko, J. Cardiac Autonomic Modulation Is Different in Terms of Clinical Variant of Multiple Sclerosis. J. Clin. Med. 2020, 9, 3176. [Google Scholar] [CrossRef]
- Qin, X.; Zheng, Y.; Chen, B. Extract EEG Features by Combining Power Spectral Density and Correntropy Spectral Density. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 2455–2459. [Google Scholar]
- Hossain, M.F.; Yaacob, H.; Nordin, A. Development of Unified Neuro-Affective Classification Tool (UNACT). In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1077, p. 012031. [Google Scholar]
- Hamzah, N.; Norhazman, H.; Zaini, N.; Sani, M. Classification of EEG signals based on different motor movement using multi-layer Perceptron artificial neural network. J. Biol. Sci. 2016, 16, 265–271. [Google Scholar] [CrossRef]
- Al-Nafjan, A.; Hosny, M.; Al-Wabil, A.; Al-Ohali, Y. Classification of human emotions from electroencephalogram (EEG) signal using deep neural network. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 419–425. [Google Scholar] [CrossRef]
- Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005; Volume 452. [Google Scholar]
- Rozado, D.; Duenser, A.; Howell, B. Improving the performance of an EEG-based motor imagery brain computer interface using task evoked changes in pupil diameter. PLoS ONE 2015, 10, e0121262. [Google Scholar] [CrossRef]
- Plechawska-Wójcik, M.; Borys, M. An analysis of EEG signal combined with pupillary response in the dynamics of human cognitive processing. In Proceedings of the 2016 9th International Conference on Human System Interactions (HSI), Portsmouth, UK, 6–8 July 2016; pp. 378–385. [Google Scholar]
- Lobo, J.L.; Ser, J.D.; De Simone, F.; Presta, R.; Collina, S.; Moravek, Z. Cognitive workload classification using eye-tracking and EEG data. In Proceedings of the International Conference on Human-Computer Interaction in Aerospace, Paris, France, 14–16 September 2016; ACM: New York, NY, USA, 2016; pp. 1–8. [Google Scholar]
- Stone, M. Cross-validation: A review. Stat. A J. Theor. Appl. Stat. 1978, 9, 127–139. [Google Scholar]
- Saadati, M.; Nelson, J.; Ayaz, H. Mental Workload Classification From Spatial Representation of FNIRS Recordings Using Convolutional Neural Networks. In Proceedings of the 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), Pittsburgh, PA, USA, 13–16 October 2019; pp. 1–6. [Google Scholar]
- Mughal, N.E.; Khalil, K.; Khan, M.J. fNIRS Based Multi-Class Mental Workload Classification Using Recurrence Plots and CNN-LSTM. In Proceedings of the 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), Bandung, Indonesia, 28–30 April 2021; pp. 1–6. [Google Scholar]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef]
- Karim, F.; Majumdar, S.; Darabi, H.; Harford, S. Multivariate LSTM-FCNs for time series classification. Neural Netw. 2019, 116, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Ismail Fawaz, H.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.A.; Petitjean, F. Inceptiontime: Finding alexnet for time series classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [Google Scholar] [CrossRef]
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Ruiz, A.P.; Flynn, M.; Large, J.; Middlehurst, M.; Bagnall, A. The great multivariate time series classification bake off: A review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 2021, 35, 401–449. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- St, L.; Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 1989, 6, 259–272. [Google Scholar]
- Jaccard, J.; Becker, M.A.; Wood, G. Pairwise multiple comparison procedures: A review. Psychol. Bull. 1984, 96, 589. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
Layer | Operation | Output Size |
---|---|---|
Input | - | (N, ) |
The first FC layer | Linear(, ) + BatchNorm + ReLU + Dropout(0.25) | (N, ) |
The second FC layer | Linear(, ) + BatchNorm + ReLU + Dropout(0.25) | (N, ) |
The third FC layer | Linear(, ) + BatchNorm + ReLU + Dropout(0.25) | (N, ) |
The last linear layer | Linear(, n) | (N, n) |
Workload Level | Mean | Median | Std | SE | |
---|---|---|---|---|---|
APCPS | Level 0 | 0.24 | 0.21 | 6.08 | 0.56 |
Level 1 | 5.75 | 5.76 | 7.36 | 0.68 | |
Level 2 | 8.85 | 8.59 | 6.71 | 0.62 | |
Fixation Number | Level 0 | 7.30 | 7.00 | 3.32 | 0.31 |
Level 1 | 7.99 | 8.00 | 3.70 | 0.34 | |
Level 2 | 10.10 | 10.00 | 4.05 | 0.38 | |
Fixation Duration | Level 0 | 0.28 | 0.21 | 0.31 | 0.03 |
Level 1 | 0.19 | 0.13 | 0.16 | 0.01 | |
Level 2 | 0.18 | 0.13 | 0.22 | 0.02 |
Workload Level | p-Value (Tukey’s HSD) | p-Value (B–H) | |
---|---|---|---|
APCPS | Level 0-Level 1 | <1 × | 3.6 × |
Level 0-Level 2 | <1 × | 2.0 × | |
Level 1-Level 2 | 1 × | 9.3 × | |
Fixation Number | Level 0-Level 1 | 0.33 | 0.14 |
Level 0-Level 2 | 5 × | 7.5 × | |
Level 1-Level 2 | 5 × | 6.6 × | |
Fixation Duration | Level 0-Level 1 | 7 × | 6 × |
Level 0-Level 2 | 3 × | 6 × | |
Level 1-Level 2 | 0.96 | 0.76 |
Workload Level | |||||
---|---|---|---|---|---|
Tukey’s HSD | Level 0-Level 1 | 0.06 | 0.79 | ||
Level 0-Level 2 | 0.88 | 0.71 | |||
Level 1-Level 2 | 0.16 | 0.98 | 0.67 | 0.99 | |
Benjamini–Hochberg | Level 0-Level 1 | 0.05 | 0.84 | ||
Level 0-Level 2 | 0.69 | 0.84 | |||
Level 1-Level 2 | 0.86 | 0.16 | 0.93 |
HRV Features | Level 0-Level 1 | Level 0-Level 2 | Level 1-Level 2 |
---|---|---|---|
Mean IBI (ms) | 0.41 | 0.34 | 0.99 |
SD IBI (ms) | 0.33 | 0.66 | 0.85 |
Mean HR (bpm) | 0.41 | 0.38 | 0.99 |
SD HR (bpm) | 0.02 | 0.11 | 0.82 |
RMSSD (ms) | 0.97 | 0.99 | 0.94 |
VLF () | 0.61 | 0.49 | 0.98 |
LF () | 0.16 | 0.61 | 0.66 |
HF () | 0.96 | 0.99 | 0.99 |
TP () | 0.91 | 0.79 | 0.97 |
LFnu (%) | 0.04 | 0.22 | 0.73 |
HFnu (%) | 0.04 | 0.22 | 0.73 |
BPV Features | Level 0-Level 1 | Level 0-Level 2 | Level 1-Level 2 |
---|---|---|---|
SD SP (mmHg) | 0.02 | 0.14 | 0.75 |
SD DP (mmHg) | 0.76 | ||
SV SP (mmHg) | 0.04 | 0.11 | 0.91 |
SV DP (mmHg) | 0.04 | 0.15 | 0.81 |
CV SP (%) | 0.03 | 0.13 | 0.85 |
CV DP (%) | 0.53 | ||
ARV SP (mmHg) | 0.11 | 0.15 | 0.99 |
ARV DP (mmHg) | 0.06 | 0.15 | 0.93 |
VLF SP () | 0.99 | 0.99 | 0.99 |
VLF DP () | 0.84 | 0.99 | 0.78 |
LF SP () | 0.17 | 0.39 | 0.88 |
LF DP () | 0.90 | ||
HF SP () | 0.26 | 0.91 | 0.48 |
HF DP () | 0.07 | 0.53 | 0.50 |
TP SP () | 0.84 | 0.96 | 0.96 |
TP DP () | 0.38 | 0.85 | 0.71 |
LFnu SP (%) | 0.37 | 0.37 | 0.99 |
LFnu DP (%) | 0.26 | 0.03 | 0.62 |
HFnu SP (%) | 0.37 | 0.37 | 0.99 |
HFnu DP (%) | 0.26 | 0.03 | 0.62 |
Signals | k-NN | NB | RF | SVM | MLP |
---|---|---|---|---|---|
PCPS | 67.02 ∓ 4.88 | 73.40 ∓ 5.53 | 74.47 ∓ 3.01 | 72.34 ∓ 2.61 | 67.92 ∓ 6.84 |
BPV | 53.19 ∓ 3.98 | 59.57 ∓ 5.42 | 57.45 ∓ 7.82 | 55.32 ∓ 6.89 | 60.42 ∓ 6.42 |
HRV | 50.53 ∓ 2.32 | 55.85 ∓ 4.35 | 55.85 ∓ 5.50 | 55.85 ∓ 2.56 | 55.00 ∓ 6.35 |
Fix | 52.13 ∓ 1.06 | 54.79 ∓ 2.32 | 53.19 ∓ 2.61 | 57.98 ∓ 2.32 | 61.67 ∓ 4.80 |
EEG | 54.19 ∓ 4.26 | 52.13 ∓ 3.19 | 60.11 ∓ 3.80 | 60.11 ∓ 9.07 | 62.92 ∓ 8.64 |
Signals | k-NN | NB | RF | SVM | MLP |
---|---|---|---|---|---|
PCPS | 79.26 ∓ 6.45 | 79.78 ∓ 7.44 | 70.68 ∓ 8.43 | 80.45 ∓ 3.15 | 74.58 ∓ 3.42 |
BPV | 59.57 ∓ 3.80 | 58.51 ∓ 4.39 | 58.51 ∓ 4.39 | 63.30 ∓ 6.45 | 63.75 ∓ 3.16 |
HRV | 51.60 ∓ 3.80 | 56.38 ∓ 8.03 | 48.94 ∓ 3.98 | 54.72 ∓ 1.76 | 54.58 ∓ 3.73 |
Fix | 61.17 ∓ 3.80 | 64.36 ∓ 9.32 | 58.51 ∓ 2.38 | 66.49 ∓ 5.07 | 63.33 ∓ 6.18 |
EEG | 60.64 ∓ 1.84 | 54.54 ∓ 6.45 | 62.77 ∓ 7.74 | 57.98 ∓ 6.27 | 63.75 ∓ 5.63 |
Signals | k-NN | NB | RF | SVM | MLP |
---|---|---|---|---|---|
PCPS | 59.57 ∓ 4.63 | 60.63 ∓ 3.19 | 66.49 ∓ 10.02 | 63.11 ∓ 2.31 | 67.52 ∓ 6.35 |
BPV | 43.09 ∓ 2.76 | 44.68 ∓ 8.38 | 53.19 ∓ 3.36 | 48.81 ∓ 5.42 | 49.17 ∓ 1.14 |
HRV | 47.87 ∓ 6.29 | 53.19 ∓ 7.37 | 49.47 ∓ 1.76 | 45.74 ∓ 6.29 | 49.58 ∓ 3.42 |
Fix | 50.32 ∓ 3.36 | 53.85 ∓ 3.15 | 50.00 ∓ 6.81 | 58.12 ∓ 3.77 | 56.25 ∓ 6.07 |
EEG | 57.98 ∓ 2.32 | 53.19 ∓ 5.83 | 59.77 ∓ 3.19 | 61.76 ∓ 1.84 | 61.33 ∓ 6.77 |
Signals | MLSTM-FCN | InceptionTime | EEGNet |
---|---|---|---|
EEG | 54.16 ∓ 7.80 | 54.58 ∓ 2.72 | 54.07 ∓ 4.03 |
PCPS | 64.58 ∓ 2.95 | 67.50 ∓ 3.16 | - |
Signals | MLSTM-FCN | InceptionTime | EEGNet |
---|---|---|---|
EEG | 55.00 ∓ 5.23 | 53.33 ∓ 2.80 | 53.33 ∓ 6.69 |
PCPS | 73.28 ∓ 5.24 | 57.98 ∓ 9.13 | - |
Signals | MLSTM-FCN | InceptionTime | EEGNet |
---|---|---|---|
EEG | 54.22 ∓ 8.70 | 53.91 ∓ 4.19 | 52.70 ∓ 3.27 |
PCPS | 63.38 ∓ 4.75 | 56.25 ∓ 9.51 | - |
Signals | Tasks | Data-Level | Feature-Level |
---|---|---|---|
PCPS + EEG | 0-1 | 65.50 ∓ 0.83 | 65.25 ∓ 6.52 |
PCPS + EEG | 0-2 | 77.08 ∓ 3.22 | 66.51 ∓ 6.46 |
PCPS + EEG | 1-2 | 62.90 ∓ 2.85 | 60.57 ∓ 8.52 |
Signals | 0-1 | 0-2 | 1-2 |
---|---|---|---|
PCPS | 74.47 ∓ 3.01 | 80.45 ∓ 3.15 | 67.52 ∓ 6.35 |
EEG | 62.92 ∓ 8.64 | 63.75 ∓ 5.63 | 61.76 ∓ 1.84 |
FIX | 61.67 ∓ 4.80 | 66.49 ∓ 5.07 | 58.12 ∓ 3.77 |
BPV | 60.42 ∓ 6.42 | 63.75 ∓ 3.16 | 53.19 ∓ 3.36 |
HRV | 55.85 ∓ 4.35 | 54.58 ∓ 3.73 | 56.38 ∓ 8.03 |
PCPS+EEG | 65.55 ∓ 0.83 | 77.08 ∓ 3.22 | 62.90 ∓ 2.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aygun, A.; Nguyen, T.; Haga, Z.; Aeron, S.; Scheutz, M. Investigating Methods for Cognitive Workload Estimation for Assistive Robots. Sensors 2022, 22, 6834. https://doi.org/10.3390/s22186834
Aygun A, Nguyen T, Haga Z, Aeron S, Scheutz M. Investigating Methods for Cognitive Workload Estimation for Assistive Robots. Sensors. 2022; 22(18):6834. https://doi.org/10.3390/s22186834
Chicago/Turabian StyleAygun, Ayca, Thuan Nguyen, Zachary Haga, Shuchin Aeron, and Matthias Scheutz. 2022. "Investigating Methods for Cognitive Workload Estimation for Assistive Robots" Sensors 22, no. 18: 6834. https://doi.org/10.3390/s22186834
APA StyleAygun, A., Nguyen, T., Haga, Z., Aeron, S., & Scheutz, M. (2022). Investigating Methods for Cognitive Workload Estimation for Assistive Robots. Sensors, 22(18), 6834. https://doi.org/10.3390/s22186834