A PI Control Method with HGSO Parameter Regulator for Trajectory Planning of 9-DOF Redundant Manipulator
Abstract
:1. Introduction
- The proposed PI-HGSO method enables the designed PI controller to obtain accurate gains during the trajectory planning process for redundant manipulators, achieving a highly precise position tracking of the end-effector.
- The design can obtain PI controller parameters more quickly and efficiently by using the HGSO parameter regulator instead of the traditional empirical trial and error, improving the controller parameter tuning cycle.
- The PI controller is used to replace the traditional gain compensation system to achieve the end-effector position compensation of the deviation part efficiently. The design structure is simple, and the error is effectively suppressed. Besides, the feasibility of the design has been guaranteed since this paper has proved that PI-HGSO is asymptotically stable in the Cartesian deviation trajectory of the endpoint.
2. PI Controller with Joint Limits for Trajectory Planning of Redundant Manipulator
3. A PI Control Method with HGSO Parameter Regulator
3.1. Introduction and Description of HGSO
- Step 1: Initialization
- Step 2: Clustering
- Step 3: Fitness evaluation
- Step 4: Update Henry’s coefficient
- Step 5: Update gas solubility.
- Step 6: Update position
- Step 7: Escape from local optimum and reset the position of the worst agents
3.2. HGSO Parameter Regulator for PI Controller
- Step 1: Initialization
- Step 2: The setting of PI controller parameters:
- Step 3: Evaluation and update:
- Step 4: Update the worst particles:
- Step 5: Repetition and iteration:
Algorithm 1 PI control method with HGSO parameter regulator |
Import: trajectory points Output: PI parameters and tracking trajectory Initialization: Initialize HGSO parameters, , , (about PI controller parameters ), , , , etc. using Equation (17) and Equation (18) () while t < the maximum number of iterations do Set the obtained by HGSO to PI parameters for solving joint angles according to the part of PI controller. Complete the evaluation of the current by Equation (24). for each search gas particles do Update the position information using Equation (21). for end Update Henry’s coefficient of each gas type clusters using Equation (19). Update solubility of each gas using Equation (20) Select the poor particles according to Equation (22) by . Reset the position of these worst particles by Equation (19) to Equation (21). t = t + 1 while end return (The final optimized parameters ) |
4. Simulation and Results
4.1. The Introduction of 9-DOF Hyper-Redundant Manipulator
4.2. The Introduction of 9-DOF Hyper-Redundant Manipulator
5. Experiment
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Zaplana, I.; Basanez, L. A novel closed-form solution for the inverse kinematics of redundant manipulators through workspace analysis. Mech. Mach. Theory 2018, 121, 829–843. [Google Scholar] [CrossRef]
- Faria, C.; Ferreira, F.; Erlhagen, W.; Monteiro, S.; Bicho, E. Position-based kinematics for 7-DoF serial manipulators with global configuration control, joint limit and singularity avoidance. Mech. Mach. Theory 2018, 121, 317–334. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Xia, Y. A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits. IEEE Trans. Neural Netw. 2003, 14, 658–667. [Google Scholar] [CrossRef]
- Parasuraman, S.; Hou, C.M.; Ganapathy, V. Motion Planning for a Redundant Manipulator Using Genetic Algorithm. Key Eng. Mater. 2011, 467–469, 782–787. [Google Scholar] [CrossRef]
- Guo, D.; Xu, F.; Yan, L. New Pseudoinverse-Based Path-Planning Scheme with PID Characteristic for Redundant Robot Manipulators in the Presence of Noise. IEEE Trans. Control. Syst. Technol. 2018, 26, 2008–2019. [Google Scholar] [CrossRef]
- Yazdani, M.; Novin, R.S.; Masouleh, M.T.; Menhaj, M.B.; Abdi, H. An experimental study on the failure tolerant control of a redundant planar serial manipulator via pseudo-inverse approach. In Proceedings of the 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, 7–9 October 2015; pp. 365–370. [Google Scholar]
- Wan, J.; Wu, H.T.; Rui, M.; Zhang, L. A study on avoiding joint limits for inverse kinematics of redundant manipulators using improved clamping weighted least-norm method. J. Mech. Sci. Technol. 2018, 32, 1367–1378. [Google Scholar] [CrossRef]
- Fan, Y.; Li, P.; Zhen, X.; Shen, Z. A Multiple Solutions Approach to the Inverse Kinematics Problem of a General Serial Manipulator. J. Phys. Conf. Ser. 2021, 2002, 012023. [Google Scholar] [CrossRef]
- Buss, S.R. Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least squares methods. IEEE Trans. Robot. Autom. 2004, 17, 16. [Google Scholar]
- Tabandeh, S.; Melek, W.W.; Clark, C.M. An adaptive niching genetic algorithm approach for generating multiple solutions of serial manipulator inverse kinematics with applications to modular robots. Robotica 2010, 28, 493–507. [Google Scholar] [CrossRef]
- Marcos, M.; Machado, J.; Azevedo-Perdicoulis, T.P. Trajectory planning of redundant manipulators using genetic algorithms. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2858–2869. [Google Scholar] [CrossRef]
- Abo-Hammour, Z.S.; Mirza, N.M.; Mirza, S.M.; Arif, M. Cartesian path planning of robot manipulators using continuous genetic algorithms. Robot. Auton. Syst. 2002, 41, 179–223. [Google Scholar] [CrossRef]
- Singh, R.; Bhushan, B. Improved ant colony optimization for achieving self-balancing and position control for balancer systems. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 8339–8356. [Google Scholar] [CrossRef]
- Chen, C.; Li, J.; Luo, J.; Xie, S.; Li, H. Seeker optimization algorithm for optimal control of manipulator. Ind. Robot 2016, 43, 677–686. [Google Scholar] [CrossRef]
- Deng, H.; Xie, C. An improved particle swarm optimization algorithm for inverse kinematics solution of multi-DOF serial robotic manipulators. Soft Comput. 2021, 25, 13695–13708. [Google Scholar] [CrossRef]
- Dereli, S.; Kker, R. A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial robotic manipulator: Quantum behaved particle swarm algorithm. Artif. Intell. Rev. 2020, 53, 949–964. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst. Appl. 2020, 166, 113917. [Google Scholar] [CrossRef]
- Roy, R.G.; Ghoshal, D. Grey Wolf Optimization-Based Second Order Sliding Mode Control for Inchworm Robot. Robotica 2019, 38, 1539–1557. [Google Scholar] [CrossRef]
- Dhargupta, S.; Ghosh, M.; Mirjalili, S.; Sarkar, R. Selective Opposition based Grey Wolf Optimization. Expert Syst. Appl. 2020, 151, 113389. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Xie, B. Obstacle avoidance for redundant manipulators based on a Novel Gradient Projection Method with a functional scalar. In Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics, Tianjin, China, 14–18 December 2010; pp. 1704–1709. [Google Scholar]
- Zhang, H.; Jin, H.; Liu, Y.; Yuan, H. An improved real-time tracking scheme based on gradient projection for kinematically redundant manipulators. In Proceedings of the 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE), Shanghai, China, 29–31 December 2017; pp. 136–140. [Google Scholar]
- Kang, J.I.; Choi, H.S.; Mai, T.V.; Duc, N.N.; Ji, D.-H.; Kim, J.-H. Experimental study of dynamic stability of underwater vehicle-manipulator system using zero moment point. J. Mar. Sci. Technol. 2017, 25, 767–774. [Google Scholar]
- Ekinci, S.; Hekimolu, B.; Izci, D. Opposition based Henry gas solubility optimization as a novel algorithm for PID control of DC motor. Eng. Sci. Technol. Int. J. 2021, 24, 331–342. [Google Scholar] [CrossRef]
- Zhong, G.; Wang, C.; Dou, W. Fuzzy adaptive PID fast terminal sliding mode controller for a redundant manipulator. Mech. Syst. Signal Process. 2021, 159, 107577. [Google Scholar] [CrossRef]
- Parra-Vega, V.; Arimoto, S.; Liu, Y.-H.; Hirzinger, G.; Akella, P. Dynamic sliding PID control for tracking of robot manipulators: Theory and experiments. IEEE Trans. Robot. Autom. 2003, 19, 967–976. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Mai, S.M.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. A modified Henry gas solubility optimization for solving motif discovery problem. Neural Comput. Appl. 2020, 32, 10759–10771. [Google Scholar] [CrossRef]
- Xie, W.; Xing, C.; Wang, J.S.; Guo, S.; Guo, M.-W.; Zhu, L.-F. Hybrid Henry Gas Solubility Optimization Algorithm Based on the Harris Hawk Optimization. IEEE Access 2020, 8, 144665–144692. [Google Scholar] [CrossRef]
- Ravikumar, S.; Kavitha, D. CNN-oppositional-based Henry gas solubility optimization model for autonomous vehicle control system. J. Field Robot. 2021, 38, 967–979. [Google Scholar] [CrossRef]
- Cao, W.; Liu, X.; Ni, J. Parameter Optimization of Support Vector Regression Using Henry Gas Solubility Optimization Algorithm. IEEE Access 2020, 8, 88633–88642. [Google Scholar] [CrossRef]
- Falco, P.; Natale, C. On the Stability of Closed-Loop Inverse Kinematics Algorithms for Redundant Robots. IEEE Trans. Robot. 2011, 27, 780–784. [Google Scholar] [CrossRef]
- Cao, H.R.; Gu, X.Q.; Yu, C.H. Obstacle Avoidance Algorithm for Redundant Manipulators Based on Weighted Generalized Inverse. Appl. Mech. Mater. 2017, 872, 303–309. [Google Scholar] [CrossRef]
- Tian, X.; Xu, Q.; Zhan, Q. An analytical inverse kinematics solution with joint limits avoidance of 7-DOF anthropomorphic manipulators without offset. J. Frankl. Inst. 2021, 358, 1252–1272. [Google Scholar] [CrossRef]
- Chan, T.F.; Dubey, R.V. A weighted least-norm solution based scheme for avoiding joint limits for redundant manipulators. IEEE Trans. Robot. Autom. 1995, 11, 286–292. [Google Scholar] [CrossRef]
- Kiréanski, M.V.; Petrovié, T.M. Combined Analytical-Pseudoinverse Inverse Kinematic Solution for Simple Redundant Manipulators and Singularity Avoidance. Int. J. Robot. Res. 2016, 12, 188–196. [Google Scholar] [CrossRef]
- Khalil, W.; Dombre, E. Inverse kinematic model of serial robots. In Modeling Identification and Control of Robots; CRC Press: Boca Raton, FL, USA, 2002; pp. 85–115. [Google Scholar]
- Li, Y.; Zhang, W.; Wang, L.; Zhao, F.; Han, W.; Chen, G. Henry’s law and accumulation of weak source for crust-derived helium: A case study of weihe basin, China. J. Nat. Gas Geosci. 2017, 2, 333–339. [Google Scholar] [CrossRef]
Joint i | Rotating Vector w | Translation Vector v (Unit: mm) |
---|---|---|
1 | [0 0 1] | [0 0 0] |
2 | [1 0 0] | [−136.80 −0.10 5.33] |
3 | [0 0 1] | [13.66 −0.10 −286.11] |
4 | [1 0 0] | [−483.75 −0.10 4.85] |
5 | [0 0 1] | [16.26 −0.53 −621.91] |
6 | [1 0 0] | [−815.07 0.23 7.38] |
7 | [0 0 1] | [14.17 −0.50 −940.63] |
8 | [1 0 0] | [−1114.45 −0.31 6.24] |
9 | [0 0 1] | [10.92 −0.57 −1241.08] |
Algorithm | Parameters |
---|---|
GA | Population size Crossover probability Mutation probability Iterations |
PSO | Population size Inertia weight decreases linearly from 0.9 to 0.4 Individual-best acceleration factor Global-best acceleration factor Iterations |
ACO | Population size Pheromone trail factor Heuristic information factor Evaporation rate Iterations |
GWO | Population size Variable decreases linearly from 2 to 0 Iterations |
HGSO | Population size Cluster number Influencing factor = 1 Component parameter of interaction ability Iterations |
Type | Algorithm | The Value and Percent of Deviation | Wilcoxon Rank Sum Test | ||||
---|---|---|---|---|---|---|---|
Max | Ave | Std | |||||
Value | Variation | Value | Percent | Value | Value | ||
Line | No PI | 1.42 × 10−3 | / | 1.11 × 10−3 | / | 1.56 × 10−4 | / |
PI | 1.23 × 10−3 | / | 1.07 × 10−3 | / | 1.80 × 10−4 | / | |
PI-PSO | 8.42 × 10−3 | −7.19 × 10−3 | 2.75 × 10−3 | 61.09% ↘ | 7.32 × 10−4 | + | |
PI-GA | 1.44 × 10−3 | −0.21 × 10−3 | 4.67 × 10−4 | 56.35% ↗ | 5.83 × 10−4 | + | |
PI-ACO | 5.60 × 10−3 | −4.37 × 10−3 | 1.00 × 10−3 | 6.54% ↗ | 3.67 × 10−4 | - | |
PI-GWO | 4.06 × 10−4 | 0.82 × 10−3 | 2.44 × 10−4 | 77.19% ↗ | 8.30 × 10−5 | + | |
PI-HGSO | 3.38 × 10−4 | 0.89 × 10−3 | 2.15 × 10−4 | 79.91% ↗ | 8.47 × 10−5 | + | |
Curve | No PI | 1.61 × 10−3 | / | 1.12 × 10−3 | / | 1.87 × 10−4 | / |
PI | 1.60 × 10−3 | / | 1.16 × 10−3 | / | 2.11 × 10−4 | / | |
PI-PSO | 4.86 × 10−3 | −3.26 × 10−3 | 1.27 × 10−4 | 89.05% ↗ | 7.07 × 10−4 | + | |
PI-GA | 5.53 × 10−3 | −3.93 × 10−3 | 4.76 × 10−4 | 58.96% ↗ | 9.32 × 10−4 | + | |
PI-ACO | 5.33 × 10−3 | −3.73 × 10−3 | 1.40 × 10−4 | 87.93% ↗ | 7.72 × 10−4 | + | |
PI-GWO | 1.55 × 10−3 | 0.05 × 10−3 | 8.99 × 10−5 | 92.22% ↗ | 1.61 × 10−4 | + | |
PI-HGSO | 3.55 × 10−4 | 1.25 × 10−3 | 8.32 × 10−5 | 92.83% ↗ | 3.35 × 10−5 | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Liu, T.; Zhu, M.; Chen, L. A PI Control Method with HGSO Parameter Regulator for Trajectory Planning of 9-DOF Redundant Manipulator. Sensors 2022, 22, 6860. https://doi.org/10.3390/s22186860
Liu M, Liu T, Zhu M, Chen L. A PI Control Method with HGSO Parameter Regulator for Trajectory Planning of 9-DOF Redundant Manipulator. Sensors. 2022; 22(18):6860. https://doi.org/10.3390/s22186860
Chicago/Turabian StyleLiu, Meijiao, Tianyu Liu, Mingchao Zhu, and Liheng Chen. 2022. "A PI Control Method with HGSO Parameter Regulator for Trajectory Planning of 9-DOF Redundant Manipulator" Sensors 22, no. 18: 6860. https://doi.org/10.3390/s22186860
APA StyleLiu, M., Liu, T., Zhu, M., & Chen, L. (2022). A PI Control Method with HGSO Parameter Regulator for Trajectory Planning of 9-DOF Redundant Manipulator. Sensors, 22(18), 6860. https://doi.org/10.3390/s22186860