Classification of Skin Cancer Lesions Using Explainable Deep Learning
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Dataset and Data Preprocessing
3.2. Deep Learning Models
3.2.1. Modified MobileNetV2
3.2.2. Modified DenseNet201
3.3. Grad-CAM Visualization
4. Results
4.1. Experimental Setup
4.2. Results Based on MobileNetV2
4.3. Results Based on DenseNet201
4.4. Analysis and Comparison
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AlSalman, A.S.; Alkaff, T.M.; Alzaid, T.; Binamer, Y. Nonmelanoma skin cancer in Saudi Arabia: Single center experience. Ann. Saudi Med. 2018, 38, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Nehal, K.S.; Bichakjian, C.K. Update on keratinocyte carcinomas. N. Engl. J. Med. 2018, 379, 363–374. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Key Statistics for Melanoma Skin Cancer. 2022. Available online: https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html (accessed on 15 March 2022).
- Albahar, M.A. Skin lesion classification using convolutional neural network with novel regularizer. IEEE Access 2019, 7, 38306–38313. [Google Scholar] [CrossRef]
- Hasan, M.R.; Fatemi, M.I.; Khan, M.M.; Kaur, M.; Zaguia, A. Comparative Analysis of Skin Cancer (Benign vs. Malignant) Detection Using Convolutional Neural Networks. J. Healthc. Eng. 2021, 2021, 5895156. [Google Scholar] [CrossRef] [PubMed]
- Oseni, O.G.; Olaitan, P.B.; Komolafe, A.O.; Olaofe, O.O.; Akinyemi, H.A.M.; Suleiman, O.A. Malignant skin lesions in Oshogbo, Nigeria. Pan Afr. Med. J. 2015, 20, 253. [Google Scholar] [CrossRef]
- Fijałkowska, M.; Koziej, M.; Antoszewski, B. Detailed head localization and incidence of skin cancers. Sci. Rep. 2021, 11, 12391. [Google Scholar] [CrossRef]
- Patel, A. Benign vs malignant tumors. JAMA Oncol. 2020, 6, 1488. [Google Scholar] [CrossRef]
- Kaur, R.; Hosseini, H.G.; Sinha, R.; Lindén, M. Melanoma Classification Using a Novel Deep Convolutional Neural Network with Dermoscopic Images. Sensors 2022, 22, 1134. [Google Scholar] [CrossRef]
- Akamatsu, T.; Hanai, U.; Kobayashi, M.; Miyasaka, M. Pyogenic granuloma: A retrospective 10-year analysis of 82 cases. Tokai J. Exp. Clin. Med. 2015, 40, 110–114. [Google Scholar]
- Marie-Lise, B.; Beauchet, A.; Aegerter, P.; Saiag, P. Is dermoscopy (epiluminescence microscopy) useful for the diagnosis of melanoma?: Results of a meta-analysis using techniques adapted to the evaluation of diagnostic tests. Arch. Dermatol. 2001, 137, 1343–1350. [Google Scholar]
- Redha, A.; Ragb, H.K. Skin lesion segmentation and classification using deep learning and handcrafted features. arXiv 2021, arXiv:2112.10307. [Google Scholar]
- Tripp, M.K.; Watson, M.; Balk, S.J.; Swetter, S.M.; Gershenwald, J.E. State of the science on prevention and screening to reduce melanoma incidence and mortality: The time is now. CA Cancer J. Clin. 2016, 66, 460–480. [Google Scholar] [CrossRef]
- Khan, M.A.; Alqahtani, A.; Khan, A.; Alsubai, S.; Binbusayyis, A.; Iqbal, C.M.M.; Yong, H.S.; Cha, J. Cucumber Leaf Diseases Recognition Using Multi Level Deep Entropy-ELM Feature Selection. Appl. Sci. 2022, 12, 593. [Google Scholar] [CrossRef]
- Attique, K.M.; Akram, T.; Sharif, M.; Shahzad, A.; Aurangzeb, K.; Alhussein, M.; Haider, S.I.; Altamrah, A. An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification. BMC Cancer 2018, 18, 1–20. [Google Scholar]
- Dorj, U.O.; Lee, K.K.; Choi, J.Y.; Lee, M. The skin cancer classification using deep convolutional neural network. Multimed. Tools Appl. 2018, 77, 9909–9924. [Google Scholar] [CrossRef]
- Filho, R.; Pedrosa, P.; Peixoto, S.A.; da Nóbrega, R.V.M.; Hemanth, D.J.; Medeiros, A.G.; Sangaiah, A.K.; de Albuquerque, V.H.C. Automatic histologically-closer classification of skin lesions. Comput. Med. Imaging Graph. 2018, 68, 40–54. [Google Scholar] [CrossRef]
- Li, Y.; Shen, L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors 2018, 18, 556. [Google Scholar] [CrossRef]
- Saba, T.; Khan, M.A.; Rehman, A.; Marie-Sainte, S.L. Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction. J. Med. Syst. 2019, 43, 289. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Le, D.N.T.; Le, H.X.; Ngo, L.T.; Ngo, H.T. Transfer learning with class-weighted and focal loss function for automatic skin cancer classification. arXiv 2020, arXiv:2009.05977. [Google Scholar]
- Iqbal, I.; Younus, M.; Walayat, K.; Kakar, M.U.; Ma, J. Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images. Comput. Med. Imaging Graph. 2021, 88, 101843. [Google Scholar] [CrossRef] [PubMed]
- Srinivasu, P.N.; SivaSai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors 2021, 21, 2852. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.S.; Miah, M.S.; Haque, J.; Rahman, M.M.; Islam, M.K. An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Mach. Learn. Appl. 2021, 5, 100036. [Google Scholar] [CrossRef]
- Afza, F.; Sharif, M.; Khan, M.A.; Tariq, U.; Yong, H.S.; Cha, J. Multiclass Skin Lesion Classification Using Hybrid Deep Features Selection and Extreme Learning Machine. Sensors 2022, 22, 799. [Google Scholar] [CrossRef]
- Chaturvedi, S.S.; Tembhurne, J.V.; Diwan, T. A multi-class skin Cancer classification using deep convolutional neural networks. Multimed. Tools Appl. 2020, 79, 28477–28498. [Google Scholar] [CrossRef]
- Skin Cancer: Malignant vs. Benign. Available online: https://www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign (accessed on 20 May 2022).
- ISIC Archive. Available online: https://www.isic-archive.com/ (accessed on 20 May 2022).
- Ding, S.; Li, R.; Wu, S. A novel composite forecasting framework by adaptive data preprocessing and optimized nonlinear grey Bernoulli model for new energy vehicles sales. Commun. Nonlinear Sci. Numer. Simul. 2021, 99, 105847. [Google Scholar] [CrossRef]
- Khan, E.; Rehman, M.Z.U.; Ahmed, F.; Khan, M.A. Classification of Diseases in Citrus Fruits using SqueezeNet. In Proceedings of the 2021 International Conference on Applied and Engineering Mathematics (ICAEM), London, UK, 30–31 August 2021; pp. 67–72. [Google Scholar]
- Park, C.; Kim, M.W.; Park, C.; Son, W.; Lee, S.M.; Jeong, H.S.; Kang, J.W.; Choi, M.H. Diagnostic Performance for Detecting Bone Marrow Edema of the Hip on Dual-Energy CT: Deep Learning Model vs. Musculoskeletal Physicians and Radiologists. Eur. J. Radiol. 2022, 152, 110337. [Google Scholar] [CrossRef]
- Yang, J.; Lu, H.; Li, C.; Hu, X.; Hu, B. Data Augmentation for Depression Detection Using Skeleton-Based Gait Information. arXiv 2022, arXiv:2201.01115. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D.D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
Categories | Original Images | Augmented Images | Training Images | Validation Images | Testing Images |
---|---|---|---|---|---|
Benign | 1800 | 3727 | 2609 | 745 | 373 |
Malignant | 1497 | 3600 | 2520 | 720 | 360 |
Total | 3297 | 7327 | 5129 | 1465 | 733 |
Layers | DenseNet201 |
---|---|
Convolution | 7 × 7 conv, stride 2 |
Pooling | 2 × 2 max pool, stride 2 |
Dense block (1) | |
Transition layer (1) | 1 × 1 conv |
3 × 3 max pool, stride 2 | |
Dense block (2) | |
Transition layer (2) | 1 × 1 conv |
2 × 2 average pool, stride 2 | |
Dense block (3) | |
Transition layer (3) | 1 × 1 conv |
2 × 2 average pool, stride 2 | |
Dense block (4) | |
CONV1_1 | 3 × 1 conv, filters 128 |
CONV1_2 | 1 × 3 conv, filters 128 |
CONV2 | 3 × 3 conv, filters 64 |
Classification Layer | Global Average Pooling |
Classification Head |
Deep Learning Model | Accuracy | Sensitivity | Specificity | Precision | F1 Score |
---|---|---|---|---|---|
MobileNetV2 | 90.54% | 89.93% | 91.18% | 91.32% | 90.62% |
Modified MobileNetV2 | 91.86% | 91.09% | 92.66% | 92.82% | 91.95% |
Deep Learning Model | Accuracy | Sensitivity | Specificity | Precision | F1 Score |
---|---|---|---|---|---|
DenseNet201 | 94.09% | 92.16% | 96.05% | 95.96% | 94.02% |
Modified DenseNet201 | 95.50% | 93.96% | 97.06% | 97.02% | 95.46% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zia Ur Rehman, M.; Ahmed, F.; Alsuhibany, S.A.; Jamal, S.S.; Zulfiqar Ali, M.; Ahmad, J. Classification of Skin Cancer Lesions Using Explainable Deep Learning. Sensors 2022, 22, 6915. https://doi.org/10.3390/s22186915
Zia Ur Rehman M, Ahmed F, Alsuhibany SA, Jamal SS, Zulfiqar Ali M, Ahmad J. Classification of Skin Cancer Lesions Using Explainable Deep Learning. Sensors. 2022; 22(18):6915. https://doi.org/10.3390/s22186915
Chicago/Turabian StyleZia Ur Rehman, Muhammad, Fawad Ahmed, Suliman A. Alsuhibany, Sajjad Shaukat Jamal, Muhammad Zulfiqar Ali, and Jawad Ahmad. 2022. "Classification of Skin Cancer Lesions Using Explainable Deep Learning" Sensors 22, no. 18: 6915. https://doi.org/10.3390/s22186915
APA StyleZia Ur Rehman, M., Ahmed, F., Alsuhibany, S. A., Jamal, S. S., Zulfiqar Ali, M., & Ahmad, J. (2022). Classification of Skin Cancer Lesions Using Explainable Deep Learning. Sensors, 22(18), 6915. https://doi.org/10.3390/s22186915