Space-Time Adaptive Processing Based on Modified Sparse Learning via Iterative Minimization for Conformal Array Radar
Abstract
:1. Introduction
- (1)
- A new clutter model which considers the influence of polarization and mutual coupling is proposed. The following theoretical analysis and simulations are based on this model.
- (2)
- The proposed method uses the accurate information of array geometry and radar system parameters to construct the CNCM based on the new received data model.
- (3)
- The original SLIM method has a hyper-parameter that should be chosen by user. The KA-MSLIM-STAP method utilizes the Laplace distribution to avoid selecting the user parameter. It can provide an excellent performance by using the CUT data only.
- (4)
- The proposed method is an iterative algorithm. It finds a local minimum of the cost function, but it converges rapidly. This method has lower computational complexity compared with other SR-STAP methods.
2. Clutter and Signal Model
2.1. Signal Steering Vector Model
2.2. Conformal Array Clutter Model and Received Data Model
3. The Proposed Method
3.1. Dictionary Matrix of Conformal Array
3.2. SR-STAP Model and Principle
3.3. KA-MSLIM-STAP
Algorithm 1: KA-MSLIM-STAP Method. | |
Input: Output: | Steering Vector Dictionary MatrixD Data Space-Time Adaptive Weight Vector |
Step 1 | Initialize values of parameters as: |
Step 2 | Repeat the following for Until convergence |
Step 3 | Calculate CNCM |
Step 4 | Compute KA-MSLIM-STAP weight |
4. Simulation Experiments
4.1. Ideal Conditoin
4.2. Model Errors
4.3. ICM
4.4. Target Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hersey, R.; Melvin, W.; McClellan, J.; Culpepper, E. Adaptive ground clutter suppression for conformal array radar systems. IET Radar Sonar Navig. 2009, 3, 357–372. [Google Scholar] [CrossRef]
- Ward, J. Space-Time Adaptive PROCESSING for airborne Radar; Technical Report 1015; MIT Lincoln Laboratory: Lexington, MA, USA, 1994. [Google Scholar]
- Klemm, R. Principles of Space-Time Adaptive Processing, 3rd ed.; IET: London, UK, 2002. [Google Scholar]
- Wu, Y.F.; Wang, T.; Wu, J.X. Robust training samples selection algorithm based on spectral similarity for space-time adaptive processing in heterogeneous interference environments. IET Radar Sonar Navig. 2015, 9, 778–782. [Google Scholar]
- Klemm, R. The Applications of Space-Time Adaptive Processing, 2nd ed.; IEE Press: Stevenage, UK, 2004. [Google Scholar]
- Hersey, R.; Melvin, W.; McClellan, J. Clutter-limited detection performance of multi-channel conformal arrays. Signal Process. 2004, 84, 1481–1500. [Google Scholar] [CrossRef]
- Reed, I.S.; Mallett, J.D.; Brennan, L.E. Rapid convergence rate in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst. 1974, 10, 853–863. [Google Scholar] [CrossRef]
- Borsari, G. Mitigating effects on STAP processing caused by an inclined array. In Proceedings of the 1998 IEEE Radar Conference, RADARCON’98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197), Dallas, TX, USA, 11–14 May 1998; pp. 135–140. [Google Scholar] [CrossRef]
- Himed, B.; Zhang, Y.; Hajjari, A. STAP with angle-Doppler compensation for bistatic airborne radars. In Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322), Long Beach, CA, USA, 22–25 April 2002. [Google Scholar] [CrossRef]
- Melvin, W.; Himed, B.; Davis, M. Doubly adaptive bistatic clutter filtering. In Proceedings of the 2003 IEEE Radar Conference (Cat. No. 03CH37474), Huntsville, AL, USA, 8 May 2003; pp. 171–178. [Google Scholar] [CrossRef]
- Melvin, W.L.; Davis, M.E. Adaptive cancellation method for geometry-induced nonstationary bistatic clutter environments. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 651–672. [Google Scholar] [CrossRef]
- Han, X.H.X.; Luo, D.L.D.; Shu, T.S.T.; Yu, W.Y.W.; Wu, M.W.M. Space-time adaptive processing for airborne radar with conformal array. In Proceedings of the IET International Radar Conference, Hangzhou, China, 14–16 October 2015. [Google Scholar] [CrossRef]
- Varadarajan, V.; Krolik, J. Joint space-time interpolation for distorted linear and bistatic array geometries. IEEE Trans. Signal Process. 2006, 54, 848–860. [Google Scholar] [CrossRef]
- Ries, P.; Lapierre, F.D.; Verly, J.G. Geometry-Induced Range-Dependence Compensation for Bistatic STAP with Conformal Arrays. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 275–294. [Google Scholar] [CrossRef]
- Klemm, R. Adaptive airborne MTI: An auxiliary channel approach. IEE Proc. F Commun. Radar Signal Process. 1987, 134, 269–276. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Gao, W. Dimension-reduced bi-iterative space–time adaptive processing method for airborne radar. J. Eng. 2019, 2019, 8138–8141. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Yang, J.X. Reduced-dimension space-time adaptive processing for airborne radar with co-prime array. J. Eng. 2019, 2019, 5971–5974. [Google Scholar] [CrossRef]
- Hun, Y.; Nikpour, M.; Stoica, P. Optimal reduced-rank estimation and filtering. IEEE Trans. Signal Process. 2001, 49, 457–469. [Google Scholar] [CrossRef]
- Sarkar, T.K.; Wang, H.; Park, S.; Adve, R.; Koh, J.; Kim, K.; Zhang, Y.; Wicks, M.; Brown, R. A deterministic least-squares approach to space-time adaptive processing (STAP). IEEE Trans. Antennas Propag. 2001, 49, 91–103. [Google Scholar] [CrossRef]
- Yang, Z.; Li, X.; Wang, H.; Jiang, W. On Clutter Sparsity Analysis in Space–Time Adaptive Processing Airborne Radar. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1214–1218. [Google Scholar] [CrossRef]
- Sen, S. Low-Rank Matrix Decomposition and Spatio-Temporal Sparse Recovery for STAP Radar. IEEE J. Sel. Top. Signal Process. 2015, 9, 1510–1523. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Candès, E.J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. 2008, 346, 589–592. [Google Scholar] [CrossRef]
- Sun, K.; Meng, H.; Lapierre, F.D.; Wang, X. Registration-based compensation using sparse representation in conformal-array STAP. Signal Process. 2011, 91, 2268–2276. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Wang, T.; Wu, J.; Su, Y. A knowledge aided SPICE space time adaptive processing method for airborne radar with conformal array. Signal Process. 2018, 152, 54–62. [Google Scholar] [CrossRef]
- Ling, J.; Tan, X.; Yardibi, T.; Li, J.; He, H.; Nordenvaad, M.L. Enhanced channel estimation and efficient symbol detection in MIMO under-water acoustic communications. In Proceedings of the 43rd Asilomar Conference on Signal Systems and Computers, Pacific Grove, CA, USA, 1–4 November 2009. [Google Scholar]
- Tan, X.; Roberts, W.; Li, J.; Stoica, P. Sparse Learning via Iterative Minimization With Application to MIMO Radar Imaging. IEEE Trans. Signal Process. 2010, 59, 1088–1101. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, K.; Li, J.; Stoica, P. Wideband source localization using sparse learning via iterative minimization. Signal Process. 2013, 93, 3504–3514. [Google Scholar] [CrossRef]
- Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Bayesian compressive sensing using laplace priors. IEEE Trans. Image Process. 2010, 19, 63. [Google Scholar] [CrossRef] [PubMed]
- Burger, H. Use of Euler-rotation angles for generating antenna patterns. IEEE Antennas Propag. Mag. 1995, 37, 56–63. [Google Scholar] [CrossRef]
- Milligan, T. More applications of Euler rotation angles. IEEE Antennas Propag. Mag. 1999, 41, 78–83. [Google Scholar] [CrossRef]
- Zhuang, Z.W. Radar Polarization Information Processing and Application, 1st ed.; National Defense Industrial Press: Beijing, China, 1999. [Google Scholar]
- Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar]
- Stoica, P.; Selén, Y. Cyclic minimizers, majorization techniques, and expectation-maximization algorithm: Arefresher. IEEE Signal Process. Mag. 2004, 59, 112–114. [Google Scholar] [CrossRef]
- Billingsley, J.B. Low-Angle Radar land Clutter: Measurement and Empirical Models; William Andrew Publishing: Norwich, NY, USA, 2002. [Google Scholar]
Parameter | Value | Unit |
---|---|---|
Number of elements | 12 | - |
Pulse number in a CPI | 16 | - |
Wavelength | 0.2 | m |
Distance between elements | 0.1 | m |
Bandwidth | 5 | MHz |
Platform height | 3000 | m |
Pulse repetition frequency | 5000 | Hz |
Platform velocity | 200 | m/s |
Clutter to noise radio | 60 | dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, B.; Wang, T. Space-Time Adaptive Processing Based on Modified Sparse Learning via Iterative Minimization for Conformal Array Radar. Sensors 2022, 22, 6917. https://doi.org/10.3390/s22186917
Ren B, Wang T. Space-Time Adaptive Processing Based on Modified Sparse Learning via Iterative Minimization for Conformal Array Radar. Sensors. 2022; 22(18):6917. https://doi.org/10.3390/s22186917
Chicago/Turabian StyleRen, Bing, and Tong Wang. 2022. "Space-Time Adaptive Processing Based on Modified Sparse Learning via Iterative Minimization for Conformal Array Radar" Sensors 22, no. 18: 6917. https://doi.org/10.3390/s22186917
APA StyleRen, B., & Wang, T. (2022). Space-Time Adaptive Processing Based on Modified Sparse Learning via Iterative Minimization for Conformal Array Radar. Sensors, 22(18), 6917. https://doi.org/10.3390/s22186917