Ultrasensitive and Regenerative Transistor Sensor Based on Dynamic Covalent Chemistry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Characterization
2.2. Device Fabrication
2.3. Electrical Measurement
2.4. Regeneration
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhan, B.; Li, C.; Yang, J.; Jenkins, G.; Huang, W.; Dong, X. Graphene Field-effect Transistor and Its Application for Electronic Sensing. Small 2014, 10, 4042–4065. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Liu, Y.; Wei, D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem. Rev. 2022, 122, 10319–10392. [Google Scholar] [CrossRef]
- Lu, Y.-X.; Lin, C.-T.; Tsai, M.-H.; Lin, K.-C. Review-Hysteresis in Carbon Nano-Structure Field Effect Transistor. Micromachines 2022, 13, 509. [Google Scholar] [CrossRef] [PubMed]
- Noyce, S.G.; Doherty, J.L.; Zauscher, S.; Franklin, A.D. Understanding and Mapping Sensitivity in MoS2 Field-Effect-Transistor-Based Sensors. ACS Nano 2020, 14, 11637–11647. [Google Scholar] [CrossRef] [PubMed]
- Jun, L.; Chen, Q.; Fu, W.; Yang, Y.; Zhu, W.; Zhang, J. Electrospun Yb-Doped In2O3 Nanofiber Field-Effect Transistors for Highly Sensitive Ethanol Sensors. ACS Appl. Mater. Interfaces 2020, 12, 38425–38434. [Google Scholar] [CrossRef]
- Cheung, K.M.; Abendroth, J.M.; Nakatsuka, N.; Zhu, B.; Yang, Y.; Andrews, A.M.; Weiss, P.S. Detecting DNA and RNA and Differentiating Single-Nucleotide Variations via Field-Effect Transistors. Nano Lett. 2020, 20, 5982–5990. [Google Scholar] [CrossRef]
- Fu, W.; Jiang, L.; van Geest, E.P.; Lima, L.M.; Schneider, G.F. Sensing at the Surface of Graphene Field-effect Transistors. Adv. Mater. 2017, 29, 1603610. [Google Scholar] [CrossRef]
- Haroon Rashid, M.; Koel, A.; Rang, T. First Principles Simulations of Phenol and Methanol Detector Based on Pristine Graphene Nanosheet and Armchair Graphene Nanoribbons. Sensors 2019, 19, 2731. [Google Scholar] [CrossRef]
- Rashid, M.H.; Koel, A.; Rang, T.; Ziko, M.H. Simulations of Benzene and Hydrogen-Sulfide Gas Detector Based on Single-Walled Carbon Nanotube over Intrinsic 4H-SiC Substrate. Micromachines 2020, 11, 453. [Google Scholar] [CrossRef]
- Luo, Z.; Hu, X.; Tian, X.; Luo, C.; Xu, H.; Li, Q.; Li, Q.; Zhang, J.; Qiao, F.; Wu, X.; et al. Structure-Property Relationships in Graphene-Based Strain and Pressure Sensors for Potential Artificial Intelligence Applications. Sensors 2019, 19, 1250. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.-P.; Tsai, C.-C.; Yang, Y.-S.; Chan, H.W.-H.; Chen, W.-Y. Synergetic Improvements of Sensitivity and Specificity of Nanowire Field Effect Transistor Gene Chip by Designing Neutralized DNA as Probe. Sci. Rep. 2018, 8, 12598. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Diallo, A.K.; Dailey, J.L.; Besar, K.; Katz, H.E. Electrochemical Processes and Mechanistic Aspects of Field-Effect Sensors for Biomolecules. J. Mater. Chem. C 2015, 3, 6445–6470. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Parekh, S.H. Linking Graphene-Based Material Physicochemical Properties with Molecular Adsorption, Structure and Cell Fate. Commun. Chem. 2020, 3, 8. [Google Scholar] [CrossRef]
- Kwon, J.; Lee, Y.; Lee, T.; Ahn, J.-H. Aptamer-Based Field-Effect Transistor for Detection of Avian Influenza Virus in Chicken Serum. Anal. Chem. 2020, 92, 5524–5531. [Google Scholar] [CrossRef]
- Zang, Y.; Zhang, F.; Huang, D.; Di, C.; Meng, Q.; Gao, X.; Zhu, D. Specific and Reproducible Gas Sensors Utilizing Gas-phase Chemical Reaction on Organic Transistors. Adv. Mater. 2014, 26, 2862–2867. [Google Scholar] [CrossRef]
- Mandenius, C.-F.; Wang, R.; Aldén, A.; Bergström, G.; Thébault, S.; Lutsch, C.; Ohlson, S. Monitoring of Influenza Virus Hemagglutinin in Process Samples Using Weak Affinity Ligands and Surface Plasmon Resonance. Anal. Chim. Acta 2008, 623, 66–75. [Google Scholar] [CrossRef]
- Zhu, X.; Sarwar, M.; Zhu, J.-J.; Zhang, C.; Kaushik, A.; Li, C.-Z. Using a Glucose Meter to Quantitatively Detect Disease Biomarkers through a Universal Nanozyme Integrated Lateral Fluidic Sensing Platform. Biosens. Bioelectron. 2019, 126, 690–696. [Google Scholar] [CrossRef]
- Thakur, B.; Zhou, G.; Chang, J.; Pu, H.; Jin, B.; Sui, X.; Yuan, X.; Yang, C.-H.; Magruder, M.; Chen, J. Rapid Detection of Single E. Coli Bacteria Using a Graphene-Based Field-Effect Transistor Device. Biosens. Bioelectron. 2018, 110, 16–22. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Z.; Wang, X.; Huang, C.; Lin, Q.; Zhao, X.; Pan, Y. A Flexible and Regenerative Aptameric Graphene–Nafion Biosensor for Cytokine Storm Biomarker Monitoring in Undiluted Biofluids toward Wearable Applications. Adv. Funct. Mater. 2021, 31, 2005958. [Google Scholar] [CrossRef]
- Shariati, M.; Vaezjalali, M.; Sadeghi, M. Ultrasensitive and Easily Reproducible Biosensor Based on Novel Doped MoS2 Nanowires Field-Effect Transistor in Label-Free Approach for Detection of Hepatitis B Virus in Blood Serum. Anal. Chim. Acta 2021, 1156, 338360. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Du, X.; Chu, Y.; Zhang, S.; Huang, J. Gas Sensors Based on Nano/Microstructured Organic Field-Effect Transistors. Small 2019, 15, 1805196. [Google Scholar] [CrossRef]
- Cousins, G.L.; Sanders, J.M. Dynamic Combinatorial Libraries of Pseudo-Peptide Hydrazone Macrocycles. Chem. Commun. 1999, 16, 1575–1576. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Zeng, L.-H.; Feng, J. Dynamic Covalent Gels Assembled from Small Molecules: From Discrete Gelators to Dynamic Covalent Polymers. Chin. Chem. Lett. 2017, 28, 168–183. [Google Scholar] [CrossRef]
- Perera, M.M.; Ayres, N. Dynamic Covalent Bonds in Self-Healing, Shape Memory, and Controllable Stiffness Hydrogels. Polym. Chem. 2020, 11, 1410–1423. [Google Scholar] [CrossRef]
- Nevejans, S.; Ballard, N.; Fernández, M.; Reck, B.; García, S.J.; Asua, J.M. The Challenges of Obtaining Mechanical Strength in Self-Healing Polymers Containing Dynamic Covalent Bonds. Polymer 2019, 179, 121670. [Google Scholar] [CrossRef]
- Jin, Y.; Yu, C.; Denman, R.J.; Zhang, W. Recent Advances in Dynamic Covalent Chemistry. Chem. Soc. Rev. 2013, 42, 6634–6654. [Google Scholar] [CrossRef]
- Bist, A.; Cho, S.J.; Ahmed, N. A Simple Pyrene-Based Highly Sensitive Turn-on Fluorescent Chemodosimeter for Hg2+. J. Incl. Phenom. Macrocycl. Chem. 2013, 77, 75–81. [Google Scholar] [CrossRef]
- Sarkar, S.; Roy, S.; Sikdar, A.; Saha, R.; Panja, S.S. A Pyrene-Based Simple but Highly Selective Fluorescence Sensor for Cu2+ Ions via a Static Excimer Mechanism. Analyst 2013, 138, 7119–7126. [Google Scholar] [CrossRef]
- Dai, C.; Guo, M.; Wu, Y.; Cao, B.-P.; Wang, X.; Wu, Y.; Kang, H.; Kong, D.; Zhu, Z.; Ying, T.; et al. Ultraprecise Antigen 10-in-1 Pool Testing by Multiantibodies Transistor Assay. J. Am. Chem. Soc. 2021, 143, 19794–19801. [Google Scholar] [CrossRef]
- Cancado, L.; Pimenta, M.; Neves, B.; Dantas, M.; Jorio, A. Influence of the Atomic Structure on the Raman Spectra of Graphite Edges. Phys. Rev. Lett. 2004, 93, 247401. [Google Scholar] [CrossRef]
- Liu, B.; López-González, L.E.; Alamri, M.; Velázquez-Contrera, E.F.; Santacruz-Ortega, H.; Wu, J.Z. Cation–π Interaction Assisted Molecule Attachment and Photocarrier Transfer in Rhodamine/Graphene Heterostructures. Adv. Mater. Interfaces 2020, 7, 2000796. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Zeng, C.; Qu, Q.; Wang, M.; Qi, W.; Su, R.; He, Z. Sandwich-like Sensor for the Highly Specific and Reproducible Detection of Rhodamine 6G on a Surface-Enhanced Raman Scattering Platform. ACS Appl. Mater. Interfaces 2020, 12, 4699–4706. [Google Scholar] [CrossRef]
- Peng, D.; Hu, B.; Kang, M.; Wang, M.; He, L.; Zhang, Z.; Fang, S. Electrochemical Sensors Based on Gold Nanoparticles Modified with Rhodamine B Hydrazide to Sensitively Detect Cu (II). Appl. Surf. Sci. 2016, 390, 422–429. [Google Scholar] [CrossRef]
- Fan, Q.; Li, J.; Zhu, Y.; Yang, Z.; Shen, T.; Guo, Y.; Wang, L.; Mei, T.; Wang, J.; Wang, X. Functional Carbon Quantum Dots for Highly Sensitive Graphene Transistors for Cu2+ Ion Detection. ACS Appl. Mater. Interfaces 2020, 12, 4797–4803. [Google Scholar] [CrossRef] [PubMed]
- Münzer, A.M.; Seo, W.; Morgan, G.J.; Michael, Z.P.; Zhao, Y.; Melzer, K.; Scarpa, G.; Star, A. Sensing Reversible Protein–Ligand Interactions with Single-Walled Carbon Nanotube Field-Effect Transistors. J. Phys. Chem. C 2014, 118, 17193–17199. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Tran, H.; Vu, T.; Reisberg, S.; Noël, V.; Mattana, G.; Pham, M.; Piro, B. Peptide-Modified Electrolyte-Gated Organic Field Effect Transistor. Application to Cu2+ Detection. Biosens. Bioelectron. 2019, 127, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, P.; Manoli, K.; Schneiderhan-Marra, N.; Anthes, U.; Wierzchowiec, P.; Bonrad, K.; Di Franco, C.; Torsi, L. Low-Picomolar, Label-Free Procalcitonin Analytical Detection with an Electrolyte-Gated Organic Field-Effect Transistor Based Electronic Immunosensor. Biosens. Bioelectron. 2018, 104, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Piccinini, E.; Bliem, C.; Reiner-Rozman, C.; Battaglini, F.; Azzaroni, O.; Knoll, W. Enzyme-Polyelectrolyte Multilayer Assemblies on Reduced Graphene Oxide Field-Effect Transistors for Biosensing Applications. Biosens. Bioelectron. 2017, 92, 661–667. [Google Scholar] [CrossRef]
- Alves, A.P.P.; Meireles, L.M.; Ferrari, G.A.; Cunha, T.H.R.; Paraense, M.O.; Campos, L.C.; Lacerda, R.G. Highly Sensitive and Reusable Ion-Sensor Based on Functionalized Graphene. Appl. Phys. Lett. 2020, 117, 33105. [Google Scholar] [CrossRef]
- Kim, M.H.; Jang, H.H.; Yi, S.; Chang, S.-K.; Han, M.S. Coumarin-Derivative-Based off–on Catalytic Chemodosimeter for Cu2+ Ions. Chem. Commun. 2009, 32, 4838–4840. [Google Scholar] [CrossRef]
- Ye, J.-H.; Xu, J.; Chen, H.; Bai, Y.; Zhang, W.; He, W. A Highly Sensitive and Selective Turn-on Fluorescent Chemodosimeter for Cu2+ Based on BODIPY and Its Application in Bioimaging. RSC Adv. 2014, 4, 6691–6695. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Zou, X.; Wu, S.; Wan, D.; Cao, A.; Liao, L.; Yuan, Q.; Duan, X. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv. Funct. Mater. 2017, 27, 1604096. [Google Scholar] [CrossRef]
- De La Rosa, C.J.L.; Sun, J.; Lindvall, N.; Cole, M.T.; Nam, Y.; Löffler, M.; Olsson, E.; Teo, K.B.K.; Yurgens, A. Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu. Appl. Phys. Lett. 2013, 102, 22101. [Google Scholar] [CrossRef] [Green Version]
Analyte | Technique | Sensor Material | Detection Limit (mol L−1) | Recycle Times (Concentration, mol L−1) | Reference |
---|---|---|---|---|---|
Rh 6G | SERS | pMIP | 1.0 × 10−10 | 8 times (1.0 × 10−4) | [32] |
Cu2+ | EC sensors | AuNPs-RBH | 1.2 × 10−14 | 10 times (1.0 × 10−8) | [33] |
Cu2+ | Quantum dots | N-CQDs | 1.0 × 10−14 | Non-renewable | [34] |
CaptAvidin | SWNT FET | TA-SWNT | 5.0 × 10−8 | 8 times (1.4 × 10−7) | [35] |
HVB DNA | NWs-FET | ssDNA | 5.0 × 10−15 | 5 times (5.0 × 10−11) | [20] |
Cu2+ | Organic FET | Gly-Gly-His | 1.0 × 10−12 | Non-renewable | [36] |
Procalcitonin | Organic FET | Anti-PCT | 8.0 × 10−13 | 1 time (2.2 × 10−12) | [37] |
Urea | Graphene FET | Urease-PEI | 1.0 × 10−6 | 6 times (1.0 × 10−4) | [38] |
Cu2+ | Graphene FET | L-Phe | 1.7 × 10−13 | 1 time (N.A.) | [39] |
Cu2+ | Graphene FET | PyCDH | 5.0 × 10−20 | 10 times (5.0 × 10−20) | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, B.-P.; Dai, C.; Wang, X.; Xiao, Q.; Wei, D. Ultrasensitive and Regenerative Transistor Sensor Based on Dynamic Covalent Chemistry. Sensors 2022, 22, 6947. https://doi.org/10.3390/s22186947
Cao B-P, Dai C, Wang X, Xiao Q, Wei D. Ultrasensitive and Regenerative Transistor Sensor Based on Dynamic Covalent Chemistry. Sensors. 2022; 22(18):6947. https://doi.org/10.3390/s22186947
Chicago/Turabian StyleCao, Ban-Peng, Changhao Dai, Xuejun Wang, Qiang Xiao, and Dacheng Wei. 2022. "Ultrasensitive and Regenerative Transistor Sensor Based on Dynamic Covalent Chemistry" Sensors 22, no. 18: 6947. https://doi.org/10.3390/s22186947
APA StyleCao, B. -P., Dai, C., Wang, X., Xiao, Q., & Wei, D. (2022). Ultrasensitive and Regenerative Transistor Sensor Based on Dynamic Covalent Chemistry. Sensors, 22(18), 6947. https://doi.org/10.3390/s22186947