Active Electric Dipole Energy Sources: Transduction via Electric Scalar and Vector Potentials
Abstract
:1. Introduction
2. Quasi-Static Time Dependent Active Hertzian Dipole; Fields and Potentials
3. Geometric Phase of an Active Electric Dipole
4. Motive Force Equations from the Time Dependence of Geometric Phase
5. Electronic Properties of an Active Cylindrical Dipole
- (1)
- The electric scalar potential,
- (2)
- The electric vector potential,
- (3)
- The electric field vector (),
- (4)
- The electric flux density ( ),To verify this calculation, we also used the relation, , which leads to the following normalized values:
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EDM | Electric Dipole Moment |
AB | Aharanov–Bohm |
DAB | Dual Aharanov–Bohm |
emf | electromotive force |
mmf | magnetomotive force |
References
- Tobar, M.E.; McAllister, B.T.; Goryachev, M. Electrodynamics of Free- and Bound-Charge Electricity Generators Using Impressed Sources. Phys. Rev. Appl. 2021, 15, 014007. [Google Scholar] [CrossRef]
- Harrington, R.E. Introduction to Electromagnetic Engineering, 2nd ed.; Dover Publications, Inc.: Mineola, NY, USA, 2012. [Google Scholar]
- Balanis, C.A. Advanced Engineering Electromagnetics; John Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Volakis, J.L.; Sertel, K. Integral Equation Methods for Electromagnetics; Scitech Publishing Inc.: Raleigh, NC, USA, 2012. [Google Scholar]
- White, D.J.; Overfelt, P.L. Poynting’s Theorems and Their Relationship to Antenna Power, Q, and Bandwidth; Office of Naval Research NAWCWPNS Technical Publication. 1999. Available online: https://www.semanticscholar.org/paper/Poynting%27s-Theorems-and-Their-Relationship-to-Q%2C-White-Overfelt/416b06fc7ac1fb27ffbccff2d00564361b7c61d2 (accessed on 22 August 2022).
- Smith, G. The Electric-Field Probe Near a Material Interface with Application to the Probing of Fields in Biological Bodies. IEEE Trans. Microw. Theory Tech. 1979, 27, 270–278. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.; Liu, W.; Su, D.; Yan, X. A Novel Tangential Electric-Field Sensor Based on Electric Dipole and Integrated Balun for the Near-Field Measurement Covering GPS Band. Sensors 2019, 19, 1970. [Google Scholar] [CrossRef] [PubMed]
- Baudry, D.; Arcambal, C.; Louis, A.; Mazari, B.; Eudeline, P. Applications of the Near-Field Techniques in EMC Investigations. IEEE Trans. Electromagn. Compat. 2007, 49, 485–493. [Google Scholar] [CrossRef]
- Stevens, N.; Martens, L. Model of a dipole antenna in free-space and near a perfectly electrical conducting plate. IEEE Trans. Antennas Propag. 2005, 53, 1672–1680. [Google Scholar] [CrossRef]
- Jiang, Q.D.; Bao, Z.Q.; Sun, Q.F.; Xie, X.C. Theory for electric dipole superconductivity with an application for bilayer excitons. Sci. Rep. 2015, 5, 11925. [Google Scholar] [CrossRef]
- Yousefi, T.; Diaz, R.E. Pushing the limits of radiofrequency (RF) neuronal telemetry. Sci. Rep. 2015, 5, 10588. [Google Scholar] [CrossRef]
- Wang, Z.L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23. [Google Scholar] [CrossRef]
- Wang, Z.L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, W.; Pradel, K.; Zhu, G.; Zhou, Y.; Zhang, Y.; Hu, Y.; Lin, L.; Wang, Z. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838. [Google Scholar] [CrossRef] [Green Version]
- Erturk, A.; Inman, D.J. Piezoelectric Energy Harvesting; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Jean-Mistral, C.; Vu Cong, T.; Sylvestre, A. Advances for dielectric elastomer generators: Replacement of high voltage supply by electret. Appl. Phys. Lett. 2012, 101, 162901. [Google Scholar] [CrossRef]
- Sano, C.; Ataka, M.; Hashiguchi, G.; Toshiyoshi, H. An Electret-Augmented Low-Voltage MEMS Electrostatic Out-of-Plane Actuator for Acoustic Transducer Applications. Micromachines 2020, 11, 267. [Google Scholar] [CrossRef] [PubMed]
- Asanuma, H.; Oguchi, H.; Hara, M.; Yoshida, R.; Kuwano, H. Ferroelectric dipole electrets for output power enhancement in electrostatic vibration energy harvesters. Appl. Phys. Lett. 2013, 103, 162901. [Google Scholar] [CrossRef]
- Alicki, R.; Jenkins, A. Quantum Theory of Triboelectricity. Phys. Rev. Lett. 2020, 125, 186101. [Google Scholar] [CrossRef] [PubMed]
- Alicki, R.; Gelbwaser-Klimovsky, D.; Jenkins, A.; von Hauff, E. Dynamical theory for the battery’s electromotive force. Phys. Chem. Chem. Phys. 2021, 23, 9428. [Google Scholar] [CrossRef]
- Alicki, R.; Gelbwaser-Klimovsky, D.; Jenkins, A.; von Hauff, E. A dynamic picture of energy conversion in photovoltaic devices. arXiv 2019, arXiv:1901.10873. [Google Scholar]
- Hwang, H.Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nat. Mater. 2012, 11, 103–113. [Google Scholar] [CrossRef]
- Liu, X.; Tang, Z.; Li, Q.; Zhang, Q.; Yu, X.; Gu, L. Symmetry-Induced Emergent Electrochemical Properties for Rechargeable Batteries. Cell Rep. Phys. Sci. 2020, 1, 100066. [Google Scholar] [CrossRef]
- Ilan, R.; Grushin, A.G.; Pikulin, D.I. Pseudo-electromagnetic fields in 3D topological semimetals. Nat. Rev. Phys. 2020, 2, 29–41. [Google Scholar] [CrossRef]
- Resta, R. Theory of the electric polarization in crystals. Ferroelectrics 1992, 136, 51–55. [Google Scholar] [CrossRef]
- Resta, R. Macroscopic polarization in crystalline dielectrics: The geometric phase approach. Rev. Mod. Phys. 1994, 66, 899–915. [Google Scholar] [CrossRef]
- King-Smith, R.D.; Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 1993, 47, 1651–1654. [Google Scholar] [CrossRef] [PubMed]
- Resta, R.; Vanderbilt, D. Physics of Ferroelectrics: A Modern Perspective; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Onoda, S.; Murakami, S.; Nagaosa, N. Topological Nature of Polarization and Charge Pumping in Ferroelectrics. Phys. Rev. Lett. 2004, 93, 167602. [Google Scholar] [CrossRef]
- Hassani Gangaraj, S.A.; Silveirinha, M.G.; Hanson, G.W. Berry Phase, Berry Connection, and Chern Number for a Continuum Bianisotropic Material From a Classical Electromagnetics Perspective. IEEE J. Multiscale Multiphysics Comput. Tech. 2017, 2, 3–17. [Google Scholar] [CrossRef]
- Zhao, Z.C.; Goryachev, M.; Krupka, J.; Tobar, M.E. Precision Multi-Mode Dielectric Characterization of a Crystalline Perovskite Enables Determination of the Temperature-Dependent Phase Transitions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 69, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Sessler, G.M.; Pondrom, P.; Zhang, X. Stacked and folded piezoelectrets for vibration-based energy harvesting. Phase Transit. 2016, 89, 667–677. [Google Scholar] [CrossRef]
- Zi, Y.; Lin, L.; Wang, J.; Wang, S.; Chen, J.; Fan, X.; Yang, P.K.; Yi, F.; Wang, Z. Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 2015, 27, 2340–2347. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef]
- Wang, Z.L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 2020, 68, 104272. [Google Scholar] [CrossRef]
- Gross, B.; de Moraes, R.J. Polarization of the Electret. J. Chem. Phys. 1962, 37, 710–713. [Google Scholar] [CrossRef]
- Wan, C.; Bowen, C.R. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: The impact of molecular-, micro- and macro-structure. J. Mater. Chem. A 2017, 5, 3091–3128. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, R.K.; Cao, Y.; Laanait, N.; Ievlev, A.; Li, L.; Yang, J.C.; Chu, Y.H.; Chen, L.Q.; Kalinin, S.V.; Maksymovych, P. Field enhancement of electronic conductance at ferroelectric domain walls. Nat. Commun. 2017, 8, 1318. [Google Scholar] [CrossRef]
- Drezet, A. Dual-Lagrangian description adapted to quantum optics in dispersive and dissipative dielectric media. Phys. Rev. A 2016, 94, 053826. [Google Scholar] [CrossRef]
- Drezet, A. Quantizing polaritons in inhomogeneous dissipative systems. Phys. Rev. A 2017, 95, 023831. [Google Scholar] [CrossRef]
- Drezet, A. Equivalence between the Hamiltonian and Langevin noise descriptions of plasmon polaritons in a dispersive and lossy inhomogeneous medium. Phys. Rev. A 2017, 96, 033849. [Google Scholar] [CrossRef]
- Pikulin, D.I.; Chen, A.; Franz, M. Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals. Phys. Rev. X 2016, 6, 041021. [Google Scholar] [CrossRef]
- Yu, J.; Zang, J.; Liu, C.X. Magnetic resonance induced pseudoelectric field and giant current response in axion insulators. Phys. Rev. B 2019, 100, 075303. [Google Scholar] [CrossRef]
- Berry, M.V.; Shukla, P. Physical curl forces: Dipole dynamics near optical vortices. J. Phys. A Math. Theor. 2013, 46, 422001. [Google Scholar] [CrossRef]
- Berry, M.V. Classical and quantum complex Hamiltonian curl forces. J. Phys. A Math. Theor. 2020, 53, 415201. [Google Scholar] [CrossRef]
- Berry, M.V.; Pragya, S. Hamiltonian curl forces. Proc. R. Soc. A 2015, 471, 20150002. [Google Scholar] [CrossRef]
- Guha, P. Curl forces and their role in optics and ion trapping. Eur. Phys. J. D 2020, 74, 99. [Google Scholar] [CrossRef]
- Liberal, I.n.; Ederra, I.n.; Gonzalo, R.; Ziolkowski, R.W. Near-field electromagnetic trapping through curl-spin forces. Phys. Rev. A 2013, 87, 063807. [Google Scholar] [CrossRef]
- Strange, P. Quantized Hamiltonian curl forces and squeezed light. J. Phys. A Math. Theor. 2018, 51, 335303. [Google Scholar] [CrossRef]
- Tobar, M.E.; McAllister, B.T.; Goryachev, M. Modified axion electrodynamics as impressed electromagnetic sources through oscillating background polarization and magnetization. Phys. Dark Universe 2019, 26, 100339. [Google Scholar] [CrossRef]
- Tobar, M.E.; McAllister, B.T.; Goryachev, M. Broadband electrical action sensing techniques with conducting wires for low-mass dark matter axion detection. Phys. Dark Universe 2020, 30, 100624. [Google Scholar] [CrossRef]
- Tobar, M.E.; McAllister, B.T.; Goryachev, M. Poynting vector controversy in axion modified electrodynamics. Phys. Rev. D 2022, 105, 045009. [Google Scholar] [CrossRef]
- Song, X.Y.; He, Y.C.; Vishwanath, A.; Wang, C. Electric polarization as a nonquantized topological response and boundary Luttinger theorem. Phys. Rev. Res. 2021, 3, 023011. [Google Scholar] [CrossRef]
- Aharonov, Y.; Bohm, D. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev. 1959, 115, 485–491. [Google Scholar] [CrossRef]
- Oh, S.; Ryu, C.M.; Suck Salk, S.H. Equivalence between Aharonov–Bohm and Aharonov–Casher effects, and motive forces. Phys. Rev. A 1994, 50, 5320–5323. [Google Scholar] [CrossRef]
- Aharonov, Y.; Casher, A. Topological Quantum Effects for Neutral Particles. Phys. Rev. Lett. 1984, 53, 319–321. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1999. [Google Scholar]
- Cabibbo, N.; Ferrari, E. Quantum electrodynamics with dirac monopoles. Nuovo C. (1955–1965) 1962, 23, 1147–1154. [Google Scholar] [CrossRef]
- Zwanziger, D. Local-Lagrangian Quantum Field Theory of Electric and Magnetic Charges. Phys. Rev. D 1971, 3, 880–891. [Google Scholar] [CrossRef]
- Singleton, D. Topological electric charge. Int. J. Theor. Phys. 1995, 34, 2453–2466. [Google Scholar] [CrossRef]
- Singleton, D. Electromagnetism with magnetic charge and two photons. Am. J. Phys. 1996, 64, 452–458. [Google Scholar] [CrossRef]
- Keller, O. Electrodynamics with magnetic monopoles: Photon wave mechanical theory. Phys. Rev. A 2018, 98, 052112. [Google Scholar] [CrossRef]
- Rajantie, A. Introduction to magnetic monopoles. Contemp. Phys. 2012, 53, 195–211. [Google Scholar] [CrossRef]
- Mignaco, J.A. Electromagnetic Duality, Charges, Monopoles, Topology. Braz. J. Phys. 2001, 31, 235–246. [Google Scholar] [CrossRef]
- Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A Math. Phys. Sci. 1984, 392, 45–57. [Google Scholar] [CrossRef]
- Wilczek, F.; Shapere, A. (Eds.) Geometric Phases in Physics; World Scientific: Singapore, 1989. [Google Scholar]
- Chiao, R. Analogies in Optics and Micro Electronics: Berry’s Phases in Optics; Springer: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Lipson, S.G. Berry’s phase in optical interferometry: A simple derivation. Opt. Lett. 1990, 15, 154–155. [Google Scholar] [CrossRef]
- Resta, R. Manifestations of Berry’s phase in molecules and condensed matter. J. Phys. Condens. Matter 2000, 12, R107–R143. [Google Scholar] [CrossRef]
- Xiao, D.; Chang, M.C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959–2007. [Google Scholar] [CrossRef] [Green Version]
- Perrot, M.; Delplace, P.; Venaille, A. Topological transition in stratified fluids. Nat. Phys. 2019, 15, 781–784. [Google Scholar] [CrossRef]
- Cimmino, A.; Opat, G.I.; Klein, A.G.; Kaiser, H.; Werner, S.A.; Arif, M.; Clothier, R. Observation of the topological Aharonov–Casher phase shift by neutron interferometry. Phys. Rev. Lett. 1989, 63, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Elion, W.J.; Wachters, J.J.; Sohn, L.L.; Mooij, J.E. Observation of the Aharonov–Casher effect for vortices in Josephson-junction arrays. Phys. Rev. Lett. 1993, 71, 2311–2314. [Google Scholar] [CrossRef]
- König, M.; Tschetschetkin, A.; Hankiewicz, E.M.; Sinova, J.; Hock, V.; Daumer, V.; Schäfer, M.; Becker, C.R.; Buhmann, H.; Molenkamp, L.W. Direct Observation of the Aharonov–Casher Phase. Phys. Rev. Lett. 2006, 96, 076804. [Google Scholar] [CrossRef]
- Grosfeld, E.; Seradjeh, B.; Vishveshwara, S. Proposed Aharonov–Casher interference measurement of non-Abelian vortices in chiral p-wave superconductors. Phys. Rev. B 2011, 83, 104513. [Google Scholar] [CrossRef]
- Simánek, E. Vortex-charge interaction and Aharonov–Casher effect in two-dimensional superconductors. Phys. Rev. B 1997, 55, 2772–2775. [Google Scholar] [CrossRef]
- He, X.G.; McKellar, B.H.J. Topological phase due to electric dipole moment and magnetic monopole interaction. Phys. Rev. A 1993, 47, 3424–3425. [Google Scholar] [CrossRef]
- Wilkens, M. Quantum phase of a moving dipole. Phys. Rev. Lett. 1994, 72, 5–8. [Google Scholar] [CrossRef]
- Dowling, J.P.; Williams, C.P.; Franson, J.D. Maxwell Duality, Lorentz Invariance, and Topological Phase. Phys. Rev. Lett. 1999, 83, 2486–2489. [Google Scholar] [CrossRef]
- Spavieri, G. Classical Lagrangian and quantum phase of the dipole. Phys. Lett. A 2003, 310, 13–18. [Google Scholar] [CrossRef]
- Chen, W.; Horsch, P.; Manske, D. Flux quantization due to monopole and dipole currents. Phys. Rev. B 2013, 87, 214502. [Google Scholar] [CrossRef]
- Vanderbilt, D. Berry Phase in Electronic Structure Theory, Electric Polarization, Orbital Magnetization and Topological Insulators; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Webb, R.A.; Washburn, S.; Umbach, C.P.; Laibowitz, R.B. Observation of he Aharonov–Bohm Oscillations in Normal-Metal Rings. Phys. Rev. Lett. 1985, 54, 2696–2699. [Google Scholar] [CrossRef] [PubMed]
- Thouless, D.J. Quantization of particle transport. Phys. Rev. B 1983, 27, 6083–6087. [Google Scholar] [CrossRef]
- Fang, Z.; Nagaosa, N.; Takahashi, K.S.; Asamitsu, A.; Mathieu, R.; Ogasawara, T.; Yamada, H.; Kawasaki, M.; Tokura, Y.; Terakura, K. The Anomalous Hall Effect and Magnetic Monopoles in Momentum Space. Science 2003, 302, 92–95. [Google Scholar] [CrossRef]
- Griffiths, D.J. Dynamic dipoles. Am. J. Phys. 2011, 79, 867–872. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobar, M.E.; Chiao, R.Y.; Goryachev, M. Active Electric Dipole Energy Sources: Transduction via Electric Scalar and Vector Potentials. Sensors 2022, 22, 7029. https://doi.org/10.3390/s22187029
Tobar ME, Chiao RY, Goryachev M. Active Electric Dipole Energy Sources: Transduction via Electric Scalar and Vector Potentials. Sensors. 2022; 22(18):7029. https://doi.org/10.3390/s22187029
Chicago/Turabian StyleTobar, Michael E., Raymond Y. Chiao, and Maxim Goryachev. 2022. "Active Electric Dipole Energy Sources: Transduction via Electric Scalar and Vector Potentials" Sensors 22, no. 18: 7029. https://doi.org/10.3390/s22187029
APA StyleTobar, M. E., Chiao, R. Y., & Goryachev, M. (2022). Active Electric Dipole Energy Sources: Transduction via Electric Scalar and Vector Potentials. Sensors, 22(18), 7029. https://doi.org/10.3390/s22187029