Importance of Meteorological Parameters and Airborne Conidia to Predict Risk of Alternaria on a Potato Crop Ambient Using Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Aspects of the Experimental Field
2.2. Weather Data
2.3. Aerobiological Sampling
2.4. Phenological Study
- Vegetative stage—the period from 50% crop emergence until the beginning of flowering (BBCH 09–61);
- Reproductive stage (flowering)—the period from which at least 50% of plants were flowering until when the flowers begin to fall (BBCH 61–69);
- Senescence stage—when 50% of the plants begin to yellow/die until when 50% of plants were completely dead (BBCH 95–99).
2.5. Data Analyses
2.5.1. Hourly Analysis
2.5.2. Daily Analysis
Implementing the ML Algorithms
3. Results
3.1. Overview of Weather Conditions during the Study
3.2. Daily Alternaria Conidia Concentration and Crop Phenology
3.3. Correlation Structure via Graphical Model of the Hourly Data Set
3.4. The Influence of the Weather Conditions per Hour on Alternaria Conidia
3.5. Analysis of Daily Data and Spearman Correlation between Alternaria Conidia and Weather Variables
3.6. Application of Machine Learning Algorithms to Predict Daily Alternaria Conidia Levels and Optimization of Hyperparameters
3.6.1. Variable of Importance
3.6.2. Evaluation of Model Performance
3.6.3. Overview of the Wining Algorithm (CART)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abuley, I.K.; Nielsen, B.J. Evaluation of models to control potato early blight (Alternaria solani) in Denmark. Crop Prot. 2017, 102, 118–128. [Google Scholar] [CrossRef]
- Meno, L.; Escuredo, O.; Rodríguez-Flores, M.S.; Seijo, M.C. Looking for a sustainable potato crop. Field assessment of early blight management. Agric. For. Meteorol. 2021, 308, 108617. [Google Scholar] [CrossRef]
- Abuley, I.K.; Nielsen, B.J. Integrating cultivar resistance into the TOMCAST model to control early blight of potato, caused by Alternaria solani. Crop Prot. 2019, 117, 69–76. [Google Scholar] [CrossRef]
- Meno, L.; Escuredo, O.; Rodríguez-Flores, M.S.; Seijo, M.C. Modification of the tomcast model with aerobiological data for management of potato early blight. Agronomy 2020, 10, 1872. [Google Scholar] [CrossRef]
- Cowgill, W.P.; Maletta, M.H.; Manning, T.; Tietjen, W.H.; Johnston, S.A.; Nitzsche, P.J. Early blight forecasting systems: Evaluation, modification, and validation for use in fresh-market tomato production in northern New Jersey. HortScience 2005, 40, 85–93. [Google Scholar] [CrossRef]
- Van Der Waals, J.E.; Korsten, L.; Aveling, T.A.S.; Denner, F.D.N. Influence of environmental factors on field concentrations of Alternaria solani conidia above a South African potato crop. Phytoparasitica 2003, 31, 353–364. [Google Scholar] [CrossRef]
- Abuley, I.K.; Nielsen, B.J.; Hansen, H.H. The influence of crop rotation on the onset of early blight (Alternaria solani). J. Phytopathol. 2019, 167, 35–40. [Google Scholar] [CrossRef]
- Aira, M.J.; Rodríguez-Rajo, F.J.; Jato, V. 47 Annual records of allergenic fungi spore: Predictive models from the NW Iberian Peninsula. Ann. Agric. Environ. Med. 2008, 15, 91–98. [Google Scholar] [PubMed]
- Maya-Manzano, J.; Muñoz-Triviño, M.; Fernández-Rodríguez, S.; Silva-Palacios, I.; Gonzalo-Garijo, A.; Tormo-Molina, R. Airborne Alternaria conidia in Mediterranean rural environments in SW of Iberian Peninsula and weather parameters that influence their seasonality in relation to climate change. Aerobiologia 2016, 32, 95–108. [Google Scholar] [CrossRef]
- Escuredo, O.; Seijo-Rodríguez, A.; Meno, L.; Rodríguez-Flores, M.S.; Seijo, M.C. Seasonal dynamics of Alternaria during the potato growing cycle and the influence of weather on the early blight disease in north-west Spain. Am. J. Potato Res. 2019, 96, 532–540. [Google Scholar] [CrossRef]
- Rodríguez-Rajo, F.J.; Iglesias, I.; Jato, V. Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycol. Res. 2005, 109, 497–507. [Google Scholar] [CrossRef]
- Konopińska, A. Monitoring of Alternaria Ness and Cladosporium Link airborne spores in Lublin (Poland) in 2002. Ann. Agric. Environ. Med. 2004, 11, 347–349. [Google Scholar] [PubMed]
- Peternel, R.; Culig, J.; Hrga, I. Atmospheric concentrations of Cladosporium spp. and Alternaria spp. spores in Zagreb (Croatia) and effects of some meteorological factors. Ann. Agric. Environ. Med. 2004, 11, 303–307. [Google Scholar] [PubMed]
- Grinn-Gofroń, A.; Bosiacka, B.; Bednarz, A.; Wolski, T. A comparative study of hourly and daily relationships between selected meteorological parameters and airborne fungal spore composition. Aerobiologia 2018, 34, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Skelsey, P.; Kessel, G.; Holtslag, A.; Moene, A.; Van Der Werf, W. Regional spore dispersal as a factor in disease risk warnings for potato late blight: A proof of concept. Agric. For. Meteorol. 2009, 149, 419–430. [Google Scholar] [CrossRef]
- Meredith, D. Violent spore release in some fungi imperfecti. Ann. Bot. 1963, 27, 39–47. [Google Scholar] [CrossRef]
- Escuredo, O.; Seijo, M.C.; Fernández-González, M.; Iglesias, I. Effects of meteorological factors on the levels of Alternaria spores on a potato crop. Int. J. Biometeorol. 2011, 55, 243–252. [Google Scholar] [CrossRef]
- Munuera Giner, M.; Carrión García, J.; Navarro Camacho, C. Airborne Alternaria spores in SE Spain (1993-98). Grana 2001, 40, 111–118. [Google Scholar] [CrossRef]
- Fernández-González, M.; Ribeiro, H.; Pereira, J.; Rodríguez-Rajo, F.; Abreu, I. Assessment of the potential real pollen related allergenic load on the atmosphere of Porto city. Sci. Total Environ. 2019, 668, 333–341. [Google Scholar] [CrossRef]
- Grinn-Gofroń, A.; Strzelczak, A.; Wolski, T. The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores. Environ. Pollut. 2011, 159, 602–608. [Google Scholar] [CrossRef]
- Grinn-Gofroń, A.; Nowosad, J.; Bosiacka, B.; Camacho, I.; Pashley, C.; Belmonte, J.; De Linares, C.; Ianovici, N.; Manzano, J.M.M.; Sadyś, M. Airborne Alternaria and Cladosporium fungal spores in Europe: Forecasting possibilities and relationships with meteorological parameters. Sci. Total Environ. 2019, 653, 938–946. [Google Scholar] [CrossRef]
- Vélez-pereira, A.M.; Linares, C.D. Logistic regression models for predicting daily airborne Alternaria and Cladosporium concentration levels in Catalonia (NE Spain). Int. J. Biometeorol. 2019, 63, 1541–1553. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.; Kampouridis, M.; Freitas, A.A.; Alexandridis, A.K. An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives. Expert Syst. Appl. 2017, 85, 169–181. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J. Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agric. For. Meteorol. 2017, 237, 105–122. [Google Scholar] [CrossRef]
- Aybar-Ruiz, A.; Jiménez-Fernández, S.; Cornejo-Bueno, L.; Casanova-Mateo, C.; Sanz-Justo, J.; Salvador-González, P.; Salcedo-Sanz, S. A novel Grouping Genetic Algorithm–Extreme Learning Machine approach for global solar radiation prediction from numerical weather models inputs. Sol. Energy 2016, 132, 129–142. [Google Scholar] [CrossRef]
- Fragni, R.; Trifirò, A.; Nucci, A.; Seno, A.; Allodi, A.; Di Rocco, M. Italian tomato-based products authentication by multi-element approach: A mineral elements database to distinguish the domestic provenance. Food Control 2018, 93, 211–218. [Google Scholar] [CrossRef]
- Fang, K.; Shen, C.; Kifer, D.; Yang, X. Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network. Geophys. Res. Lett. 2017, 44, 11030–11039. [Google Scholar] [CrossRef]
- Bochenek, B.; Ustrnul, Z. Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere 2022, 13, 180. [Google Scholar] [CrossRef]
- Wen, L.; Bowen, C.; Hartman, G. Prediction of short-distance aerial movement of Phakopsora pachyrhizi urediniospores using machine learning. Phytopathology 2017, 107, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Cheng, X.; Tang, F.; Zhou, Y. The control of moldy risk during rice storage based on multivariate linear regression analysis and random forest algorithm. JUSTC 2022, 52, 6. [Google Scholar] [CrossRef]
- Wiesner-Hanks, T.; Wu, H.; Stewart, E.; DeChant, C.; Kaczmar, N.; Lipson, H.; Gore, M.A.; Nelson, R.J. Millimeter-Level Plant Disease Detection From Aerial Photographs via Deep Learning and Crowdsourced Data. Front. Plant Sci. 2019, 10, 1550. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X. Plant diseases and pests detection based on deep learning: A review. Plant Methods 2021, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Galán, S.C.; González, P.C.; Teno, P.A.; Vilches, E.D. Manual de Calidad y Gestión de la Red Española de Aerobiología; Universidad de Córdoba: Córdoba, Argentina, 2007. [Google Scholar]
- Hack, H.; Gall, H.; Klamke, T.; Meier, U.; Stauss, R.; Witzenberg, A. Phänologische entwicklungsstadien der Kartoffel (Solanum tuberosum L.). Nachr. Dtsch. Pflanzenschutzd. 1993, 45, 11–19. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Abuley, I.; Hansen, J.G. Characterisation of the level and type of resistance of potato varieties to late blight (Phytophthora infestans). Phytopathology 2022, 112, 1917–1927. [Google Scholar] [CrossRef]
- Abuley, I.K.; Nielsen, B.J.; Labouriau, R. Resistance status of cultivated potatoes to early blight (Alternaria solani) in Denmark. Plant Pathol. 2018, 67, 315–326. [Google Scholar] [CrossRef]
- Abreu, G.C.G.; Labouriau, R.; Edwards, D. High-Dimensional Graphical Model Search with the gRapHD R Package. J. Stat. Softw. 2010, 37, 18. [Google Scholar] [CrossRef]
- Kassambara, A. ggcorrplot: Visualization of a Correlation Matrix Using ‘ggplot2’; R Package Version 0.1.3. 2019. Available online: https://CRAN.R-project.org/package=ggcorrplot (accessed on 18 August 2022).
- Nwanganga, F.; Chapple, M. Decision Trees. In Practical Machine Learning in R; Nwanganga, F., Chapple, M., Eds.; John Wiley & Sons: Indianapolis, IN, USA, 2020; pp. 277–304. [Google Scholar]
- Nwanganga, F.; Chapple, M. k-Nearest Neighbors. In Practical Machine Learning in R; Nwanganga, F., Chapple, M., Eds.; John Wiley & Sons: Indianapolis, IN, USA, 2020; pp. 221–249. [Google Scholar]
- Nwanganga, F.; Chapple, M. Improving Performance. In Practical Machine Learning in R; Nwanganga, F., Chapple, M., Eds.; John Wiley & Sons: Indianapolis, IN, USA, 2020; pp. 341–366. [Google Scholar]
- Kuhn, M. Caret: Classification and Regression Training; Astrophysics Source Code Library: Houghton, MI, USA, 2022. [Google Scholar]
- Shtienberg, D. Alternaria diseases of potatoes: Epidemiology and management under Israeli conditions. In Proceedings of the Euroblight Workshop, Limassol, Cyprus, 12–15 May 2013; pp. 169–180. [Google Scholar]
- Abuley, I.; Nielsen, B.J.; Bødker, L.; Nielsen, G.C. Timing the application of fungicides to control potato early blight (Alternaria solani) in multi-location field trials in Denmark. In Proceedings of the Euroblight Workshop, Aarhus, Demark, 14–17 May 2017; pp. 103–108. [Google Scholar]
- Meno, L.; Abuley, I.K.; Escuredo, O.; Seijo, M.C. Suitability of Early Blight Forecasting Systems for Detecting First Symptoms in Potato Crops of NW Spain. Agronomy 2022, 12, 1611. [Google Scholar] [CrossRef]
- Iglesias, I.; Rodríguez-Rajo, F.J.; Méndez, J. Evaluation of the different Alternaria prediction models on a potato crop in A Limia (NW of Spain). Aerobiologia 2007, 23, 27–34. [Google Scholar] [CrossRef]
- Bardei, F.; Bouziane, H.; Trigo, M.d.M.; Ajouray, N.; El Haskouri, F.; Kadiri, M. Atmospheric concentrations and intradiurnal pattern of Alternaria and Cladosporium conidia in Tétouan (NW of Morocco). Aerobiologia 2017, 33, 221–228. [Google Scholar] [CrossRef]
Estimate | Std. Error | t Value | p-Value | |
---|---|---|---|---|
(Intercept) | 7.815 | 0.517 | 15.123 | <0.0001 ** |
RH | −0.073 | 0.006 | −12.483 | <0.0001 ** |
Rad | −0.006 | 0.001 | −4.445 | <0.0001 ** |
RH:Rad | 0.0001 | 0.000 | 7.824 | <0.0001 ** |
Algorithm a | Kappa | Accuracy | CI b | |
---|---|---|---|---|
With conidia | C5.0 | 0.60 | 0.85 | 0.78–0.92 |
CART | 0.62 | 0.86 | 0.78–0.92 | |
KNN | 0.40 | 0.79 | 0.700.86 | |
RF | 0.51 | 0.83 | 0.76–0.91 | |
Without conidia | C5.0 | 0.38 | 0.79 | 0.70–0.87 |
CART | 0.35 | 0.78 | 0.69–0.86 | |
KNN | 0.41 | 0.80 | 0.71–0.88 | |
RF | 0.43 | 0.80 | 0.74–0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meno, L.; Escuredo, O.; Abuley, I.K.; Seijo, M.C. Importance of Meteorological Parameters and Airborne Conidia to Predict Risk of Alternaria on a Potato Crop Ambient Using Machine Learning Algorithms. Sensors 2022, 22, 7063. https://doi.org/10.3390/s22187063
Meno L, Escuredo O, Abuley IK, Seijo MC. Importance of Meteorological Parameters and Airborne Conidia to Predict Risk of Alternaria on a Potato Crop Ambient Using Machine Learning Algorithms. Sensors. 2022; 22(18):7063. https://doi.org/10.3390/s22187063
Chicago/Turabian StyleMeno, Laura, Olga Escuredo, Isaac Kwesi Abuley, and María Carmen Seijo. 2022. "Importance of Meteorological Parameters and Airborne Conidia to Predict Risk of Alternaria on a Potato Crop Ambient Using Machine Learning Algorithms" Sensors 22, no. 18: 7063. https://doi.org/10.3390/s22187063
APA StyleMeno, L., Escuredo, O., Abuley, I. K., & Seijo, M. C. (2022). Importance of Meteorological Parameters and Airborne Conidia to Predict Risk of Alternaria on a Potato Crop Ambient Using Machine Learning Algorithms. Sensors, 22(18), 7063. https://doi.org/10.3390/s22187063