Partitionable High-Efficiency Multilayer Diffractive Optical Neural Network
Abstract
:1. Introduction
2. Principle and Analysis
2.1. Optical Neural Network Based on Fresnel–Kirchhoff Diffraction
2.2. Multilayer Diffractive Optical Neural Network with Partitioned Multiplexing
3. Experiments
3.1. Experimental Design and Setup
3.2. Robustness between Network Layers
3.3. Classification Experiments and Results
4. Discussion
4.1. Estimation of the Computational Speed of Multi-Layer Networks
4.2. Limits of Partitionable Multilayer Diffractive Optical Neural Network
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zoabi, Y.; Deri-Rozov, S.; Shomron, N. Machine learning-based prediction of COVID-19 diagnosis based on symptoms. NPJ Digit. Med. 2021, 4, 3. [Google Scholar] [CrossRef]
- Richens, J.G.; Lee, C.M.; Johri, S. Improving the accuracy of medical diagnosis with causal machine learning. Nat. Commun. 2020, 11, 3923. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Ren, Y.; Han, Z.; Chen, K.C.; Hanzo, L. Machine Learning Paradigms for Next-Generation Wireless Networks. IEEE Wirel. Commun. 2017, 24, 98–105. [Google Scholar] [CrossRef]
- Zhang, C.; Patras, P.; Haddadi, H. Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 2224–2287. [Google Scholar] [CrossRef]
- Wei, H.; Laszewski, M.; Kehtarnavaz, N. Deep Learning-Based Person Detection and Classification for Far Field Video Surveillance. In Proceedings of the 2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS), Dallas, TX, USA, 12 November 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Kang, L.W.; Wang, I.S.; Chou, K.L.; Chen, S.Y.; Chang, C.Y. Image-Based Real-Time Fire Detection using Deep Learning with Data Augmentation for Vision-Based Surveillance Applications. In Proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taipei, Taiwan, 18–21 September 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Modi, A.S. Review Article on Deep Learning Approaches. In Proceedings of the 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 14–15 June 2018; pp. 1635–1639. [Google Scholar] [CrossRef]
- Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), Toronto, ON, Canada, 24–28 June 2017; pp. 1–12. [Google Scholar] [CrossRef]
- Sawchuk, A.; Strand, T. Digital optical computing. Proc. IEEE 1984, 72, 758–779. [Google Scholar] [CrossRef]
- Goodman, J.W.; Dias, A.R.; Woody, L.M. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Opt. Lett. 1978, 2, 1–3. [Google Scholar] [CrossRef]
- Lin, X.; Rivenson, Y.; Yardimci, N.T.; Veli, M.; Luo, Y.; Jarrahi, M.; Ozcan, A. All-optical machine learning using diffractive deep neural networks. Science 2018, 361, 1004–1008. [Google Scholar] [CrossRef]
- Kulce, O.; Mengu, D.; Rivenson, Y.; Ozcan, A. All-optical information-processing capacity of diffractive surfaces. Light Sci. Appl. 2021, 10, 25. [Google Scholar] [CrossRef]
- Luo, Y.; Mengu, D.; Yardimci, N.T.; Rivenson, Y.; Veli, M.; Jarrahi, M.; Ozcan, A. Design of task-specific optical systems using broadband diffractive neural networks. Light Sci. Appl. 2019, 8, 112. [Google Scholar] [CrossRef]
- Rahman, M.S.S.; Li, J.; Mengu, D.; Rivenson, Y.; Ozcan, A. Ensemble learning of diffractive optical networks. Light Sci. Appl. 2021, 10, 14. [Google Scholar] [CrossRef]
- Chen, H.; Feng, J.; Jiang, M.; Wang, Y.; Lin, J.; Tan, J.; Jin, P. Diffractive Deep Neural Networks at Visible Wavelengths. Engineering 2021, 7, 1483–1491. [Google Scholar] [CrossRef]
- Zuo, Y.; Li, B.; Zhao, Y.; Jiang, Y.; Chen, Y.C.; Chen, P.; Jo, G.B.; Liu, J.; Du, S. All-optical neural network with nonlinear activation functions. Optica 2019, 6, 1132–1137. [Google Scholar] [CrossRef]
- Li, S.; Ni, B.; Feng, X.; Cui, K.; Liu, F.; Zhang, W.; Huang, Y. All-optical image identification with programmable matrix transformation. Opt. Express 2021, 29, 26474–26485. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Fang, L.; Yan, T.; Wu, J.; Li, Y.; Fan, J.; Wu, H.; Lin, X.; Dai, Q. In situ optical backpropagation training of diffractive optical neural networks. Photonics Res. 2020, 8, 940–953. [Google Scholar] [CrossRef]
- Zhou, T.; Lin, X.; Wu, J.; Chen, Y.; Xie, H.; Li, Y.; Fan, J.; Wu, H.; Fang, L.; Dai, Q. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics 2021, 15, 367–373. [Google Scholar] [CrossRef]
- Caulfield, H.J.; Kinser, J.; Rogers, S.K. Optical neural networks. Proc. IEEE 1989, 77, 1573–1583. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to Fourier Optics; McGraw Hill: New York NY, USA, 1995; ISBN 0-07-024254-2. [Google Scholar]
- Yevick, D.; Thylén, L. Analysis of gratings by the beam-propagation method. J. Opt. Soc. Am. 1982, 72, 1084–1089. [Google Scholar] [CrossRef]
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- LeCun, Y.; Cortes, C.; Burges, C. MNIST Handwritten Digit Database. ATT Labs [Online]. 2010; Volume 2. Available online: http://yann.lecun.com/exdb/mnist (accessed on 12 September 2022).
Method | Digital Simulation | Optical Experiment | Taining Time | Layers | |
---|---|---|---|---|---|
MNIST | purposed | 93% (10,000) | 89.1% (1000) | 4 h | 4 |
D2NN (Thz) [11] | 91.7% (10,000) | 88% (50) | 8 h | 5 | |
D2NN (632 nm) [15] | 91.57% (10,000) | 84% (50) | 20 h | 5 | |
Fashion | purposed | 83.9% (10,000) | 81.7% (1000) | 4 h | 4 |
D2NN (Thz) [11] | 81.1% (10,000) | 90% (50) | 8 h | 5 | |
D2NN (632 nm) [15] | - | - | - | - |
Mask Size | Pixel Size | Epoch | Train | Test | Train (Nonlinear) | Test (Nonlinear) |
---|---|---|---|---|---|---|
64 × 64 | 8m | 100 | ||||
64 × 64 | 16m | 100 | ||||
64 × 64 | 24m | 100 | ||||
64 × 64 | 32m | 100 | ||||
128 × 128 | 8m | 100 | ||||
128 × 128 | 16m | 100 | ||||
128 × 128 | 24m | 100 | ||||
128 × 128 | 32m | 100 | ||||
256 × 256 | 8m | 100 | ||||
256 × 256 | 16m | 100 | ||||
256 × 256 | 24m | 100 | ||||
256 × 256 | 32m | 100 | ||||
512 × 512 | 8m | 100 | ||||
512 × 512 | 16m | 100 | ||||
512 × 512 | 24m | 100 | ||||
512 × 512 | 32m | 100 | ||||
1024 × 1024 | 8m | 100 | ||||
1024 × 1024 | 16m | 100 | ||||
1024 × 1024 | 24m | 100 | ||||
1024 × 1024 | 32m | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Wang, Z.; He, B.; Nie, T.; Zhang, X.; Fu, T. Partitionable High-Efficiency Multilayer Diffractive Optical Neural Network. Sensors 2022, 22, 7110. https://doi.org/10.3390/s22197110
Long Y, Wang Z, He B, Nie T, Zhang X, Fu T. Partitionable High-Efficiency Multilayer Diffractive Optical Neural Network. Sensors. 2022; 22(19):7110. https://doi.org/10.3390/s22197110
Chicago/Turabian StyleLong, Yongji, Zirong Wang, Bin He, Ting Nie, Xingxiang Zhang, and Tianjiao Fu. 2022. "Partitionable High-Efficiency Multilayer Diffractive Optical Neural Network" Sensors 22, no. 19: 7110. https://doi.org/10.3390/s22197110
APA StyleLong, Y., Wang, Z., He, B., Nie, T., Zhang, X., & Fu, T. (2022). Partitionable High-Efficiency Multilayer Diffractive Optical Neural Network. Sensors, 22(19), 7110. https://doi.org/10.3390/s22197110