A Method Used to Improve the Dynamic Range of Shack–Hartmann Wavefront Sensor in Presence of Large Aberration
Abstract
:1. Introduction
2. Methods
2.1. Shack–Hartmann Wavefront Sensing Technology
2.2. Centroid Detection Based on Autocorrelation Method
2.3. Spot-Matching Network
3. Results
3.1. Data Preparation and Implementation Details
3.2. Evaluation Indicators
3.3. Qualitative Results
3.4. Quantitative Results
3.5. Limitation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ares, J.; Mancebo, T.; Bara, S. Position and Displacement Sensing with Shack-Hartmann Wave-Front Sensors. Appl. Opt. 2000, 39, 1511–1520. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, J. Bermerkungen über Den Bau Und Die Justierung Von Spektrographen. Z. Instrum. 1900, 20, 47. [Google Scholar]
- Shack, R.V. Production and Use of a Lecticular Hartmann Screen. J. Opt. Soc. Am. 1971, 61, 656–661. [Google Scholar]
- Vargas, J.; González-Fernandez, L.; Quiroga, J.A.; Belenguer, T. Shack–Hartmann Centroid Detection Method Based on High Dynamic Range Imaging and Normalization Techniques. Appl. Opt. 2010, 49, 2409–2416. [Google Scholar] [CrossRef]
- Neal, D.R.; Copland, J.; Neal, D.A. Shack-Hartmann Wavefront Sensor Precision and Accuracy. In Proceedings of the Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, Seattle, WA, USA, 9–11 July 2002. [Google Scholar]
- Primot, J. Theoretical Description of Shack–Hartmann Wave-Front Sensor. Opt. Commun. 2003, 222, 81–92. [Google Scholar] [CrossRef]
- Wang, J.Y.; Silva, D.E. Wave-Front Interpretation with Zernike Polynomials. Appl. Opt. 1980, 19, 1510–1518. [Google Scholar] [CrossRef] [PubMed]
- Soloviev, O.; Vdovin, G. Hartmann-Shack Test with Random Masks for Modal Wavefront Reconstruction. Opt. Express 2005, 13, 9570–9584. [Google Scholar] [CrossRef]
- Thomas, S.; Fusco, T.; Tokovinin, A.; Nicolle, M.; Rousset, G. Comparison of Centroid Computation Algorithms in a Shack–Hartmann Sensor. Mon. Not. R. Astron. Soc. 2006, 371, 323–336. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Wang, C. Optimum Threshold Selection Method of Centroid Computation for Gaussian Spot. In Proceedings of the Aopc: Image Processing & Analysis, Beijing, China, 5–7 May 2015. [Google Scholar]
- Lardière, O.; Conan, R.; Clare, R.; Bradley, C.; Hubin, N. Compared Performance of Different Centroiding Algorithms for High-Pass Filtered Laser Guide Star Shack-Hartmann Wavefront Sensors. Proc. SPIE Int. Soc. Opt. Eng. 2010, 7736, 821–835. [Google Scholar]
- Ma, X.; Rao, C.; Zheng, H. Error Analysis of Ccd-Based Point Source Centroid Computation under the Background Light. Opt. Express 2009, 17, 8525–8541. [Google Scholar] [CrossRef]
- Leroux, C.; Dainty, C. Estimation of Centroid Positions with a Matched-Filter Algorithm: Relevance for Aberrometry of the Eye. Opt. Express 2010, 18, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Polo, M.C.; Lambert, A. Centroid Estimation for a Shack–Hartmann Wavefront Sensor Based on Stream Processing. Appl. Opt. 2017, 56, 6466–6475. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.; Restrepo, R.; Estrada, J.C.; Sorzano, C.O.; Du, Y.Z.; Carazo, J.M. Shack-Hartmann Centroid Detection Using the Spiral Phase Transform. Appl. Opt. 2012, 51, 7362–7367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas, J.; Restrepo, R.; Belenguer, T. Shack-Hartmann Spot Dislocation Map Determination Using an Optical Flow Method. Opt. Express 2014, 22, 1319–1329. [Google Scholar] [CrossRef]
- Schwiegerling, J. History of the Shack Hartmann Wavefront Sensor and Its Impact in Ophthalmic Optics; SPIE Optical Engineering + Applications:SPIE: Bellingham, WA, USA, 2014; Volume 9186. [Google Scholar]
- van Ginkel, R.; Mechó, M.; Cardona, G.; González-Méijome, J.M. The Effect of Accommodation on Peripheral Refraction under Two Illumination Conditions. Photonics 2022, 9, 364. [Google Scholar] [CrossRef]
- Canovas, C.; Ribak, E.N. Comparison of Hartmann Analysis Methods. Appl. Opt. 2007, 46, 1830–1835. [Google Scholar] [CrossRef]
- Zhao, S.; Cheng, X. Application and Development of Wavefront Sensor Technology. Int. J. Mater. Sci. Appl. 2017, 6, 154–159. [Google Scholar] [CrossRef]
- Sakharov, A.M.; Baryshnikov, N.V.; Karasik, V.E.; Sheldakova, J.V.; Kudryashov, A.; Nikitin, A. A Method for Reconstructing the Equation of the Aspherical Surface of Mirrors in an Explicit Form Using a Device with a Wavefront Sensor. In Proceedings of the Optical Manufacturing and Testing XIII, Virtual, 24 August–4 September 2020. [Google Scholar]
- Rocktäschel, M.; Tiziani, H.J. Limitations of the Shack–Hartmann Sensor for Testing Optical Aspherics. Opt. Laser Technol. 2002, 34, 631–637. [Google Scholar] [CrossRef]
- Neal, D.R.; Pulaski, P.; Raymond, T.D.; Neal, D.A.; Wang, Q.; Griesmann, U. Testing Highly Aberrated Large Optics with a Shack-Hartmann Wavefront Sensor. In Proceedings of the Advanced Wavefront Control: Methods, Devices, and Applications, San Diego, CA, USA, 6–7 August 2003. [Google Scholar]
- Li, C. Three-Dimensional Surface Profile Measurement of Microlenses Using the Shack–Hartmann Wavefront Sensor. J. Micro Electromech. Syst. 2012, 21, 530–540. [Google Scholar] [CrossRef]
- Sheldakova, J.; Kudryashov, A.; Zavalova, V.; Romanov, P. Shack-Hartmann Wavefront Sensor Versus Fizeau Interferometer for Laser Beam Measurements. In Proceedings of the Laser Resonators and Beam Control XI, San Jose, CA, USA, 26–27 January 2009. [Google Scholar]
- Murphy, K.; Burke, D.; Devaney, N.; Dainty, C. Experimental Detection of Optical Vortices with a Shack-Hartmann Wavefront Sensor. Opt. Express 2010, 18, 15448–15460. [Google Scholar] [CrossRef]
- Li, T.; Huang, L.; Gong, M. Wavefront Sensing for a Nonuniform Intensity Laser Beam by Shack–Hartmann Sensor with Modified Fourier Domain Centroiding. Opt. Eng. 2014, 53, 044101. [Google Scholar] [CrossRef]
- Alexandrov, A.; Rukosuev, A.L.; Zavalova, V.Y.; Romanov, P.; Samarkin, V.V.; Kudryashov, A.V. Adaptive System for Laser Beam Formation. In Proceedings of the Laser Beam Shaping III, Seattle, WA, USA, 9–11 July 2002. [Google Scholar]
- Leroux, C.; Dainty, C. A Simple and Robust Method to Extend the Dynamic Range of an Aberrometer. Opt. Express 2009, 17, 19055–19061. [Google Scholar] [CrossRef] [PubMed]
- Pfund, J.; Lindlein, N.; Schwider, J. Dynamic Range Expansion of a Shack–Hartmann Sensor by Use of a Modified Unwrapping Algorithm. Opt. Lett. 1998, 23, 995–997. [Google Scholar] [CrossRef] [PubMed]
- Yoon, G.-Y.; Pantanelli, S.; Nagy, L.J. Large-Dynamic-Range Shack-Hartmann Wavefront Sensor for Highly Aberrated Eyes. J. Biomed. Opt. 2006, 11, 030502. [Google Scholar] [CrossRef]
- Lindlein, N.; Pfund, J.; Schwider, J. Algorithm for Expanding the Dynamic Range of a Shack-Hartmann Sensor by Using a Spatial Light Modulator. Opt. Eng. 2001, 40, 837–840. [Google Scholar] [CrossRef]
- Gao, Z.; Li, X.; Ye, H. Large Dynamic Range Shack–Hartmann Wavefront Measurement Based on Image Segmentation and a Neighbouring-Region Search Algorithm. Opt. Commun. 2019, 450, 190–201. [Google Scholar] [CrossRef]
- Guo, H.; Korablinova, N.; Ren, Q.; Bille, J. Wavefront Reconstruction with Artificial Neural Networks. Opt. Express 2006, 14, 6456–6462. [Google Scholar] [CrossRef]
- Suárez Gómez, S.L.; González-Gutiérrez, C.; García Riesgo, F.; Sánchez Rodríguez, M.L.; Iglesias Rodríguez, F.J.; Santos, J.D. Convolutional Neural Networks Approach for Solar Reconstruction in Scao Configurations. Sensors 2019, 19, 2233. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, M.; Zhao, W.; Dong, L.; Bing, X. Wavefront Reconstruction of Shack-Hartmann Sensorwith Insufficient Lenslets Based on Extreme Learningmachine. Appl. Opt. 2020, 59, 4768–4774. [Google Scholar] [CrossRef]
- He, Y.; Liu, Z.; Ning, Y.; Li, J.; Xu, X.; Jiang, Z. Deep Learning Wavefront Sensing Method for Shack-Hartmann Sensors with Sparse Sub-Apertures. Opt. Express 2021, 29, 17669–17682. [Google Scholar] [CrossRef]
- Li, Z.; Li, X. Centroid Computation for Shack-Hartmann Wavefront Sensor in Extreme Situations Based on Artificial Neural Networks. Opt. Express 2018, 26, 31675–31692. [Google Scholar] [CrossRef] [PubMed]
- González-Gutiérrez, C.; Sánchez-Rodríguez, M.L.; Calvo-Rolle, J.L.; de Cos Juez, F.J. Multi-Gpu Development of a Neural Networks Based Reconstructor for Adaptive Optics. Complexity 2018, 2018, 5348265. [Google Scholar] [CrossRef]
- González-Gutiérrez, C.; Santos, J.D.; Martínez-Zarzuela, M.; Basden, A.G.; Osborn, J.; Díaz-Pernas, F.J.; de Cos Juez, F.J. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems. Sensors 2017, 17, 1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifert, L.; Liesener, J.; Tiziani, H.J. The Adaptive Shack–Hartmann Sensor. Opt. Commun. 2003, 216, 313–319. [Google Scholar] [CrossRef]
- Platt, B.C.; Shack, R. History and Principles of Shack-Hartmann Wavefront Sensing. J. Refract. Surg. 2001, 17, S573–S577. [Google Scholar] [CrossRef]
- Southwell, W.H. Wave-Front Estimation from Wave-Front Slope Measurements. JOsA 1980, 70, 998–1006. [Google Scholar] [CrossRef]
- Hudgin, R.H. Optimal Wave-Front Estimation. JOsA 1977, 67, 378–382. [Google Scholar] [CrossRef]
- Fried, D.L. Least-Square Fitting a Wave-Front Distortion Estimate to an Array of Phase-Difference Measurements. JOsA 1977, 67, 370–375. [Google Scholar] [CrossRef]
- Cubalchini, R. Modal Wave-Front Estimation from Phase Derivative Measurements. JOsA 1979, 69, 972–977. [Google Scholar] [CrossRef]
- Ríos, S.; Acosta, E.; Bará, S. Hartmann Sensing with Albrecht Grids. Opt. Commun. 1997, 133, 443–453. [Google Scholar] [CrossRef]
- Noll, R.J. Zernike Polynomials and Atmospheric Turbulence. JOsA 1976, 66, 207–211. [Google Scholar] [CrossRef]
- Liang, J.; Grimm, B.; Goelz, S.; Bille, J.F. Objective Measurement of Wave Aberrations of the Human Eye with the Use of a Hartmann–Shack Wave-Front Sensor. JOSA A 1994, 11, 1949–1957. [Google Scholar] [CrossRef]
- Rukosuev, A.; Nikitin, A.; Belousov, V.; Sheldakova, J.; Toporovsky, V.; Kudryashov, A. Expansion of the Laser Beam Wavefront in Terms of Zernike Polynomials in the Problem of Turbulence Testing. Appl. Sci. 2021, 11, 12112. [Google Scholar] [CrossRef]
- Roddier, N.A. Atmospheric Wavefront Simulation Using Zernike Polynomials. Opt. Eng. 1990, 29, 1174–1180. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Focal length of the lenslets | 6.5 mm |
Wavelength | 500 nm |
Lenslet numbers | 16 × 16 |
Lenslet size | 500 µm |
Number of pixels in each sub-aperture | 20 × 20 pixels |
Pixel size | 10 µm |
Parameter | Value |
---|---|
Learning rate | 0.001 |
Epoch | 50 |
Batch size | 8 |
Momentum | 0.9 |
Decay rate | 0.5~0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Wang, J.; Wang, B. A Method Used to Improve the Dynamic Range of Shack–Hartmann Wavefront Sensor in Presence of Large Aberration. Sensors 2022, 22, 7120. https://doi.org/10.3390/s22197120
Yang W, Wang J, Wang B. A Method Used to Improve the Dynamic Range of Shack–Hartmann Wavefront Sensor in Presence of Large Aberration. Sensors. 2022; 22(19):7120. https://doi.org/10.3390/s22197120
Chicago/Turabian StyleYang, Wen, Jianli Wang, and Bin Wang. 2022. "A Method Used to Improve the Dynamic Range of Shack–Hartmann Wavefront Sensor in Presence of Large Aberration" Sensors 22, no. 19: 7120. https://doi.org/10.3390/s22197120
APA StyleYang, W., Wang, J., & Wang, B. (2022). A Method Used to Improve the Dynamic Range of Shack–Hartmann Wavefront Sensor in Presence of Large Aberration. Sensors, 22(19), 7120. https://doi.org/10.3390/s22197120