Flow-Enhanced Photothermal Spectroscopy
Abstract
:1. Introduction
2. Methods
2.1. Fabry–Pérot Interferometer
2.2. Analytical Model of the Thermal Evolution
2.3. Simulation of the Temperature Response
2.4. Experimental Setup
2.5. Photothermal Cell
2.6. Humidity Generation, Signal Processing and Data Analysis
3. Results and Discussion
3.1. Analytical Model Results
3.2. Flow Noise
3.3. Excitation Modulation Frequency Sweeps
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PT | photothermal |
PTS | photothermal spectroscopy |
RI | refractive index |
MFC | mass flow controller |
Appendix A. Model Parameters
Symbol | Value | Unit | Description |
---|---|---|---|
2 | mm | Excitation channel height | |
1 | mm | Excitation channel width | |
16 | mm | Excitation channel length | |
10.5 | mm | Excitation length | |
a | 0.43 | mm | Excitation laser 1/e radius |
13 × 10−3 | W | Average optical exc. laser power | |
50 to 2000 | Hz | Exc. laser modulation frequency | |
0.05 to 0.77 | Gas mass flow rate | ||
9.7 × 103 | 1 | HO mole fraction | |
5.75 × 10−24 [21] | m2 molec−1 | HO absorption cross section at 7327.7 cm | |
101,325 | Absolute gas pressure | ||
298.25 | Absolute gas temperature | ||
1.381 × 10−23 | J K−1 | Boltzmann’s constant |
Symbol | From | Approx. Value | Unit | Description |
---|---|---|---|---|
f(, , ) [27] | 1.012 × 103 | J kg−1 K−1 | Mixture specific heat per unit dry air | |
f(, , ) [27] | 0.876 | m3 kg−1 | Mixture volume per unit humid air | |
f(, , ) [27] | 2.697 × 10−2 | W m−1 K−1 | Mixture thermal conductivity | |
1.142 | kg m−3 | Density of humid air | ||
2.461 × 1025 | molec m−3 | Total number concentration | ||
D | 2.334 × 10−5 | m2 s−1 | Thermal diffusivity | |
2 | 314 to 12,566 | rad s−1 | Exc. laser angular frequency | |
1.373 | m−1 | Absorption coefficient at 7327.7 cm |
References
- Bialkowski, S.E. Photothermal Spectroscopy Methods for Chemical Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1996; Volume 177. [Google Scholar]
- Krzempek, K. A review of photothermal detection techniques for gas sensing applications. Appl. Sci. 2019, 9, 2826. [Google Scholar] [CrossRef]
- Sedlacek, A.; Lee, J. Photothermal interferometric aerosol absorption spectrometry. Aerosol Sci. Technol. 2007, 41, 1089–1101. [Google Scholar] [CrossRef]
- Lee, J.; Moosmüller, H. Measurement of Light Absorbing Aerosols with Folded-Jamin Photothermal Interferometry. Sensors 2020, 20, 2615. [Google Scholar] [CrossRef] [PubMed]
- Dudzik, G.; Krzempek, K.; Abramski, K.; Wysocki, G. Solid-state laser intra-cavity photothermal gas sensor. Sens. Actuators B Chem. 2021, 328, 129072. [Google Scholar] [CrossRef]
- Davis, C.C.; Petuchowski, S.J. Phase fluctuation optical heterodyne spectroscopy of gases. Appl. Opt. 1981, 20, 2539. [Google Scholar] [CrossRef]
- Campillo, A.; Petuchowski, S.; Davis, C.C.; Lin, H.B. Fabry–Perot photothermal trace detection. Appl. Phys. Lett. 1982, 41, 327–329. [Google Scholar] [CrossRef]
- Breitegger, P.; Lang, B.; Bergmann, A. Intensity modulated photothermal measurements of NO2 with a compact fiber-coupled fabry–pérot interferometer. Sensors 2019, 19, 3341. [Google Scholar] [CrossRef]
- Krzempek, K.; Dudzik, G.; Abramski, K. Photothermal spectroscopy of CO2 in an intracavity mode-locked fiber laser configuration. Opt. Express 2018, 26, 28861–28871. [Google Scholar] [CrossRef]
- Pandey, G.; Kumar, A. An Overview of Applications of Photothermal Spectroscopy with Special Reference to Environmental Studies. J. Sci. Ind. Res. 2001, 60, 28–34. [Google Scholar]
- Owens, M.A.; Davis, C.C.; Dickerson, R.R. A photothermal interferometer for gas-phase ammonia detection. Anal. Chem. 1999, 71, 1391–1399. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, S.; Jin, W.; Bao, H.; Ho, H.L.; Wang, C.; Gao, S. Ethane detection with mid-infrared hollow-core fiber photothermal spectroscopy. Opt. Express 2020, 28, 38115–38126. [Google Scholar] [CrossRef] [PubMed]
- Gomolka, G.; Krajewska, M.; Khegai, A.M.; Alyshev, S.V.; Lobanov, A.S.; Firstov, S.V.; Pysz, D.; Stepniewski, G.; Buczynski, R.; Klimczak, M.; et al. Heterodyne photothermal spectroscopy of methane near 1651 nm inside hollow-core fiber using a bismuth-doped fiber amplifier. Appl. Opt. 2021, 60, C84–C91. [Google Scholar] [CrossRef]
- Jin, W.; Cao, Y.; Yang, F.; Ho, H.L. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun. 2015, 6, 6767. [Google Scholar] [CrossRef] [PubMed]
- Nikodem, M.; Gomółka, G.; Klimczak, M.; Pysz, D.; Buczyński, R. Laser absorption spectroscopy at 2 μm inside revolver-type anti-resonant hollow core fiber. Opt. Express 2019, 27, 14998–15006. [Google Scholar] [CrossRef]
- Hecht, E. Optics; Pearson Education India: Noida, India, 2012. [Google Scholar]
- Rose, A.; Vyas, R.; Gupta, R. Pulsed photothermal deflection spectroscopy in a flowing medium: A quantitative investigation. Appl. Opt. 1986, 25, 4626–4643. [Google Scholar] [CrossRef] [PubMed]
- Sell, J. Photothermal Investigations of Solids and Fluids; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Lang, B.; Breitegger, P.; Brunnhofer, G.; Prats Valero, J.; Schweighart, S.; Klug, A.; Hassler, W.; Bergmann, A. Molecular relaxation effects on vibrational water vapor photoacoustic spectroscopy in air. Appl. Phys. B Lasers Opt. 2020, 126, 64. [Google Scholar] [CrossRef]
- Gordon, I.; Rothman, L.; Hargreaves, R.; Hashemi, R.; Karlovets, E.; Skinner, F.; Conway, E.; Hill, C.; Kochanov, R.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Kochanov, R.V.; Gordon, I.; Rothman, L.; Wcisło, P.; Hill, C.; Wilzewski, J. HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data. J. Quant. Spectrosc. Radiat. Transf. 2016, 177, 15–30. [Google Scholar] [CrossRef]
- Miklós, A.; Hess, P.; Bozóki, Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 2001, 72, 1937–1955. [Google Scholar] [CrossRef]
- Breitegger, P.; Bergmann, A. A precise gas dilutor based on binary weighted critical flows to create NO2 concentrations. Proceedings 2018, 2, 998. [Google Scholar]
- Ciddor, P.E. Refractive index of air: New equations for the visible and near infrared. Appl. Opt. 1996, 35, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Owens, J.C. Optical refractive index of air: Dependence on pressure, temperature and composition. Appl. Opt. 1967, 6, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Hu, Y.; Qiao, S.; He, Y.; Tittel, F.K. Trace gas sensing based on multi-quartz-enhanced photothermal spectroscopy. Photoacoustics 2020, 20, 100206. [Google Scholar] [CrossRef]
- Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radeschnig, U.; Bergmann, A.; Lang, B. Flow-Enhanced Photothermal Spectroscopy. Sensors 2022, 22, 7148. https://doi.org/10.3390/s22197148
Radeschnig U, Bergmann A, Lang B. Flow-Enhanced Photothermal Spectroscopy. Sensors. 2022; 22(19):7148. https://doi.org/10.3390/s22197148
Chicago/Turabian StyleRadeschnig, Ulrich, Alexander Bergmann, and Benjamin Lang. 2022. "Flow-Enhanced Photothermal Spectroscopy" Sensors 22, no. 19: 7148. https://doi.org/10.3390/s22197148
APA StyleRadeschnig, U., Bergmann, A., & Lang, B. (2022). Flow-Enhanced Photothermal Spectroscopy. Sensors, 22(19), 7148. https://doi.org/10.3390/s22197148