Multimode Design and Piezoelectric Substrate Anisotropy Use to Improve Performance of Acoustic Liquid Sensors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wixforth, A.; Scriba, J.; Wassermeier, J.; Kotthaus, G.; Weimann, G.; Schlapp, W. Interaction of surface acoustic waves with a two-dimensional electron system in LiNbO3-GaAs/AlGaAs sandwich structure. J. Appl. Phys. 1988, 64, 2213–2215. [Google Scholar] [CrossRef]
- Zaitsev, B.D.; Kuznetsova, I.E. Surface acoustic waves in a gallium arsenide-conducting layer structure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 1130–1132. [Google Scholar] [CrossRef]
- Ballantine, D.S.; White, R.M.; Martin, S.J.; Ricco, A.J.; Zellers, E.T.; Frye, G.C.; Wohltjen, H. Acoustic Wave Sensors; Academic Press: San Diego, CA, USA, 1997; pp. 83–88. [Google Scholar]
- Zaitsev, B.D.; Joshi, S.G.; Kuznetsova, I.E.; Borodina, I.A. Influence of conducting layer and conducting electrode on acoustic waves propagating in potassium niobate plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Wang, B.; Qian, Z.; Kuznetsova, I.; Ma, T. Influence of surface conductivity on dispersion curves, mode shapes, stress, and potential for Lamb waves propagating in piezoelectric plate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, I.; Nedospasov, I.A.; Kolesov, V.V.; Qian, Z.; Wang, B.; Zhu, F. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates. Ultrasonics 2018, 86, 6–13. [Google Scholar] [CrossRef]
- Zaitsev, B.D.; Kuznetsova, I.E.; Joshi, S.G.; Borodina, I.A. Shear horizontal acoustic waves in piezoelectric plates bordered with conductive liquids. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 627–631. [Google Scholar] [CrossRef]
- Anisimkin, V.I.; Caliendo, C.; Verona, E. Acoustic Plate Mode sensing in liquids based on free and electrically shorted plate surfaces. Ultrasonics 2016, 68, 29–32. [Google Scholar] [CrossRef]
- Borodina, I.; Zaitsev, B.; Teplykh, A.; Burygin, G.; Guliy, O. Sensor based on PZT ceramic resonator with lateral electric field for immunodetectionof bacteria in the conducting aquatic environment. Sensors 2020, 20, 3003. [Google Scholar] [CrossRef]
- Guliy, O.I.; Zaitsev, B.D.; Burygin, G.L.; Karavaeva, O.A.; Fomin, A.S.; Staroverov, S.A.; Borodina, I.A. Prospects for the use of gold nanoparticles to increase the sensitivity of an acoustic sensor in the detection of microbial cells. Ultrasound Med. Biol. 2020, 46, 1727–1737. [Google Scholar] [CrossRef]
- Zaitsev, B.D.; Kuznetsova, I.E.; Joshi, S.G. Anomalous resisto-acoustic effect. J. Appl. Phys. 1999, 86, 6868–6874. [Google Scholar] [CrossRef]
- Kuznetsova, I.E.; Zaitsev, B.D. The peculiarities of the Bleustein-Gulyaev wave propagation in structures containing conductive layer. Ultrasonics 2015, 59, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Zaitsev, B.D.; Kuznetsova, I.E.; Joshi, S.G.; Borodina, I.A. Acoustic waves in piezoelectric plates bordered with viscous and conductive liquids. Ultrasonics 2001, 39, 45–50. [Google Scholar] [CrossRef]
- Josse, F. Acoustic wave liquid-phase-based microsensors. Sens. Actuators A Phys. 1994, 44, 199–208. [Google Scholar] [CrossRef]
- Fisher, B.H.; Malocha, D.C. Study of the acoustoelectric effect for SAW sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 698–706. [Google Scholar] [CrossRef]
- Caliendo, C.; Hamidullah, M. A theoretical study of love wave sensors based on ZnO-glass layered structures for application to liquid environments. Biosensors 2016, 6, 59. [Google Scholar] [CrossRef]
- Kondoh, J.; Nakayama, K.; Kuznetsova, I. Study of frequency dependence of shear horizontal surface acoustic wave sensor for engine oil measurements. Sens. Actuators A Phys. 2021, 325, 112503. [Google Scholar] [CrossRef]
- Yang, C.-H.; Shue, C.J. Guided waves propagating in a piezoelectric plate immersed in a conductive fluid. NDT E Int. 2001, 39, 199–206. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Kuo, S.H. Leaky Lamb wave of a piezoelectric plate subjected to conductive fluid loading: Theoretical analysis and numerical calculation. J. Appl. Phys. 2006, 100, 073519. [Google Scholar] [CrossRef]
- Anisimkin, V.; Kolesov, V.; Kuznetsova, A.; Shamsutdinova, E.; Kuznetsova, I. An analysis of the water-to-ice phase transition using acoustic plate waves. Sensors 2021, 21, 919. [Google Scholar] [CrossRef]
- Anisimkin, I. New type of an acoustic plate modes: Quasi-longitudinal normal wave. Ultrasonics 2004, 42, 1095–1099. [Google Scholar] [CrossRef]
- Yantchev, V.; Katardjiev, I. Micromachined thin film plate acoustic resonators utilizing the lowest order symmetric Lamb wave mode. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Soluch, W.; Lysakowska, M. Properties of shear horizontal acoustic plate modes in BT-cut quartz. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 2239–2243. [Google Scholar] [CrossRef] [PubMed]
- Caliendo, C.; Lo Castro, F. Quasi-linear polarized modes in Y-rotated piezoelectric GaPO4 plates. Crystals 2014, 4, 228–240. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, L.; Zhang, S.; Zhang, H. Theoretical research on ultrasonic sensors based on high-order Lamb waves. J. Appl. Phys. 2014, 115, 14–20. [Google Scholar] [CrossRef]
- Anisimkin, V.I.; Voronova, N.V. Features of normal higher-order acoustic wave generation in thin piezoelectric plates. Acoust. Phys. 2020, 66, 1–4. [Google Scholar] [CrossRef]
- Anisimkin, V.I.; Pokusaev, B.G.; Skladnev, D.A.; Sorokin, V.V.; Tyupa, D.V. Application of an acoustoelectronic technique to study ordered microstructured disperse systems with biological objects in a hydrogel. Acoust. Phys. 2016, 62, 754–759. [Google Scholar] [CrossRef]
- Anisimkin, V.I.; Kuznetsova, I.E.; Kolesov, V.V.; Pyataikin, I.I.; Sorokin, V.V.; Skladnev, D.A. Plate acoustic wave sensor for detection of small amounts of bacterial cells in micro-litre liquid samples. Ultrasonics 2015, 62, 156–159. [Google Scholar] [CrossRef]
- Anisimkin, V.I.; Voronova, N.V. New modification of the acoustic Lamb waves and its application for liquid and ice sensing. Ultrasonics 2021, 116, 106496. [Google Scholar] [CrossRef]
- Kumaru, S.; Sahu, S.A. SH wave vibration in functionally graded porous piezoelectric composite loaded with Newtonian conductive/non-conductive liquid. Waves Rand. Compl. Media 2022, 1–23. [Google Scholar] [CrossRef]
- Laidoudi, F.; Kanouni, F.; Assali, A.; Caliendo, C.; Amara, S.; Nezarri, H.; Boubenider, F. Thickness shear SMRresonator based on Yttrium-doped AlN for high sensitive liquid sensor. Sens. Actuators A Phys. 2022, 333, 113238. [Google Scholar] [CrossRef]
- Borodina, I.A.; Zaitsev, B.D.; Teplykh, A.A. Influence of the conductivity of a liquid contacting with a lateral electric field excited resonator based on PZT ceramics on its characteristics. Ultrasonics 2020, 102, 106059. [Google Scholar] [CrossRef] [PubMed]
- Anisimkin, V.I.; Voronova, N.V. Controlling Acoustic Wave Energy Fluxes in Piezoelectric Crystals. J. Commun. Technol. Electron. 2020, 65, 90–92. [Google Scholar] [CrossRef]
- Kuznetsova, I.E.; Zaitsev, B.D.; Teplykh, A.A.; Joshi, S.G.; Kuznetsova, A.S. Power flow angle (PFA) of acoustic waves in thin piezoelectric plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 1984–1991. [Google Scholar] [CrossRef]
- Slobodnik, A.J.; Conway, J.R.; Delmonico, E.D. Microwave Acoustic Handbook; V.1A. Surface Wave Velocities; Air Force Systems Command: Cambridge, MA, USA, 1973. [Google Scholar]
- Adler, E.L.; Slaboszewicz, J.K.; Farnell, G.W.; Jen, C.K. PC software for SAW propagation in anisotropic multi-layers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1990, 37, 215–220. [Google Scholar] [CrossRef]
- Anisimkin, V.I. Anisotropy of the acoustic plate modes in ST-Quartz and 128Y-LiNbO3. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 120–132. [Google Scholar] [CrossRef]
- Weast, R.C.; Astle, M.J. Chemical Rubber Company Handbook of Chemistry and Physics, 66th ed.; Chemical Rubber D: Boca Raton, FL, USA, 1985; 254p. [Google Scholar]
- Anisimkin, V.I.; Voronova, N.V.; Puchkov, Y.V. General properties of the acoustic plate modes at different temperatures. Ultrasonics 2015, 62, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Gulyaev, Y.V.; Pustovoit, V.I. Amplification of surface waves in semiconductors. Sov. Phys. J. Exp. Theor. Phys. 1964, 47, 2251–2253. [Google Scholar]
- Zaitsev, B.D.; Kuznetsova, I.E.; Joshi, S.G. Anomalous Resisto-acoustic Effect in a Piezoelectric–Conducting Liquid Structure. Tech. Phys. 2001, 46, 767–769. [Google Scholar] [CrossRef]
- Anisimkin, I.V.; Anisimkin, V.I. Attenuation of acoustic normal modes in piezoelectric plates loaded by viscous liquids. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 1487–1492. [Google Scholar] [CrossRef]
IDT Period, μm | IDT Aperture, μm | Number of Electrode Pairs in IDT | Face-to-Face Distance between Input and Output IDTs, μm | Distance L Coated with Liquid, μm | Plate Thickness h/λ |
---|---|---|---|---|---|
200 | 4900 | 20 | 24,000 | 18,000 | 1.75 or 2.5 |
n | vn, m/s | Ψn, degr. | fn, MHz |
---|---|---|---|
0 | 3721.9 | −13.1° | 18.6 |
1 | 3804.95 | −8.9° | 19 |
2 | 4013.36 | −0.1° | 20 |
3 | 4272.11 | 2.7° | 21.4 |
4 | 4678.26 | −6.8° | 23.4 |
Plate | Θ, degr. | h/λ | f, MHz | ΔS1, dB | ΔS4/4, dB | Δϕ1, degr. | Δϕ4/4, degr. |
---|---|---|---|---|---|---|---|
128°Y-LNO | 90° | 2.5 | 36.55 | 11 | 0.6 | 60° | 9.5° |
128°Y-LNO | 0° | 1.75 | 31.18 | 7 | 0.8 | 64° | 8.5° |
128°Y-LNO | 0° | 1.75 | 43.4 | 6 | 0.23 | 44° | 5.5° |
128°Y-LNO | 30° | 1.75 | 34.9 | 6 | 0.65 | 59° | 6.5° |
41°Y-LNO | 30° | 1.75 | 35.925 | 10 | 0.8 | 67° | 8.8° |
41°Y-LNO | 90° | 1.75 | 33.62 | 15 | 1.5 | 150° | 15° |
Y-LNO | 30° | 1.75 | 40.42 | 9 | 0.8 | 40° | 21.3° |
Y-LNO | 60° | 1.75 | 40.24 | 18 | 2 | 102° | 32° |
Y-LNO | 90° | 1.75 | 38.72 | 4.6 | 0.6 | 37° | 6.1° |
Y-LNO | 90° | 1.75 | 52.48 | 23 | 1.4 | 282° | 14° |
Y-LNO | 90° | 1.75 | 58.46 | 24 | 2.1 | 300° | 10° |
36°Y-LTaO | 0° | 2.5 | 62.21 | 14 | 0.8 | 32° | 5° |
36°Y-LTaO | 60° | 2.5 | 31.19 | 8.7 | 0.75 | 82° | 7.5° |
36°Y-LTaO | 90° | 2.5 | 29 | 10 | 1 | 76° | 13° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smirnov, A.; Anisimkin, V.; Voronova, N.; Shamsutdinova, E.; Li, P.; Ezzin, H.; Qian, Z.; Ma, T.; Kuznetsova, I. Multimode Design and Piezoelectric Substrate Anisotropy Use to Improve Performance of Acoustic Liquid Sensors. Sensors 2022, 22, 7231. https://doi.org/10.3390/s22197231
Smirnov A, Anisimkin V, Voronova N, Shamsutdinova E, Li P, Ezzin H, Qian Z, Ma T, Kuznetsova I. Multimode Design and Piezoelectric Substrate Anisotropy Use to Improve Performance of Acoustic Liquid Sensors. Sensors. 2022; 22(19):7231. https://doi.org/10.3390/s22197231
Chicago/Turabian StyleSmirnov, Andrey, Vladimir Anisimkin, Natalia Voronova, Elizaveta Shamsutdinova, Peng Li, Hamdi Ezzin, Zhenghua Qian, Tingfeng Ma, and Iren Kuznetsova. 2022. "Multimode Design and Piezoelectric Substrate Anisotropy Use to Improve Performance of Acoustic Liquid Sensors" Sensors 22, no. 19: 7231. https://doi.org/10.3390/s22197231
APA StyleSmirnov, A., Anisimkin, V., Voronova, N., Shamsutdinova, E., Li, P., Ezzin, H., Qian, Z., Ma, T., & Kuznetsova, I. (2022). Multimode Design and Piezoelectric Substrate Anisotropy Use to Improve Performance of Acoustic Liquid Sensors. Sensors, 22(19), 7231. https://doi.org/10.3390/s22197231