Latency-Aware Task Scheduling for IoT Applications Based on Artificial Intelligence with Partitioning in Small-Scale Fog Computing Environments
Abstract
:1. Introduction
- We propose a latency-aware task scheduling method for Internet of Things applications based on artificial intelligence in small-scale fog computing environments.
- We introduce a partitioning technique that allows us to perform hyperparameter tunings in parallel with multiple edge servers.
- We design and implement the artificial neural network and partitioning method suitable for real-time and Internet of Things applications in small-scale fog computing environments.
- We compare performance results with state-of-the-art studies to show the effectiveness and efficiency of the proposed latency-aware fog resource and task management scheme.
2. Related Work
3. The Proposed Method
3.1. Architecture and Partitioning Framework
3.2. Partitioning Technique
3.3. Algorithms
Algorithm 1. Partitioning Algorithm for Parameter Server. | |
1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 19: 20: 21: | Input:Dataset Output:Model_global Initialization: Seed ← get_random(CurrentTime); Set_edge ← get_edgeservers(); Num_edge ← convert_to_num(Set_Edge) Model_global ← null; Total_size ← get_total_entry(Dataset); Split_size ← Total_size/Num_edge; for all Edge_i ∊ Set_edge do // making data splits and allocate them to edge servers Split_i ← make_split(Dataset, Split_size, shuffle(Seed, Num_edge)); Boolean ← duplication_check(Split_i); if Boolean == false then continue; end if allocate_split(Edge_i, Split_i); end for for all Edge_i ∊ Set_Edge do // aggregation of local models for data splits Local_model_i ← retrieveLocalModel(Edge_i); Model_global ← Model_global ∪ Local_model_i; end for return Model_global |
Algorithm 2. Partitioning Algorithm for Edge Server i. | |
1: 2: 3: 4: 5: 6: 7: | Input: Split_i (can be allocated from the parameter server) Model_pre (pre-trained model) Workload Output: Local_model_i Split_i ← getSplitFromPS(); Local_model_i ← train(Workload, Model_pre); // backpropagation return Local_model_i; |
Algorithm 3. Scheduling Algorithm. | |
1: 2: 3: 4: 5: 6: 7: 8: 9: 10: | Input: Model_global (can be retrieved from the parameter server) Output: SchedulingDecision Model_global ← getModelFromPS(); vSchedulingDecision ← convertToDecision(Model_global); Diff ← searchForMigration(SchedulingDecision, SchedulingDecision_previous) for each FogTask ∊ Diff do performMigration(FogTask.source, FogTask.destination); end for saveSchedule(SchedulingDecision); return SchedulingDecision; |
4. Performance Evaluation
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papert, M.; Pflaum, A. Development of an Ecosystem Model for the Realization of Internet of Things (IoT) Services in Supply Chain Management. Electron. Mark. 2017, 27, 175–189. [Google Scholar] [CrossRef]
- Goudarzi, M.; Palaniswami, M.; Buyya, R. Scheduling IoT Applications in Edge and Fog Computing Environments: A Taxonomy and Future Directions. ACM Comput. Surv. 2022. [Google Scholar] [CrossRef]
- Ali, Z.H.; Ali, H.A. Towards sustainable smart IoT applications architectural elements and design: Opportunities, challenges, and open directions. J. Supercomput. 2021, 77, 5668–5725. [Google Scholar] [CrossRef]
- Huang, J.; Wang, M.; Wu, Y.; Chen, Y.; Shen, X. Distributed Offloading in Overlapping Areas of Mobile-Edge Computing for Internet of Things. IEEE Internet Things J. 2022, 9, 13837–13847. [Google Scholar] [CrossRef]
- Babar, M.; Sohail Khan, M. ScalEdge: A framework for scalable edge computing in Internet of things–based smart systems. Int. J. Distrib. Sens. Netw. 2021, 17, 15501477211035332. [Google Scholar] [CrossRef]
- Luan, D.; Wang, E.; Liu, W.; Yang, Y.; Wu, J. Minimum-Cost Edge-Server Location Strategy in Mobile Crowdsensing. IEEE Trans. Netw. Serv. Manag. 2021, 18, 3375–3388. [Google Scholar] [CrossRef]
- Kim, S.Y.; Suzuki, T.; Kani, J.I.; Yoshida, T. Demonstration of Real-time Coherent 10-Gb/s QPSK Reception Implemented on a Commodity Server. In Proceedings of the 2021 European Conference on Optical Communication (ECOC), Bordeaux, France, 13–16 September 2021; pp. 1–4. [Google Scholar]
- Jain, S.; Gupta, S.; Sreelakshmi, K.K.; Rodrigues, J.J.P.C. Fog computing in enabling 5G-driven emerging technologies for development of sustainable smart city infrastructures. Clust. Comput. 2022, 25, 1111–1154. [Google Scholar] [CrossRef]
- Kishor, A.; Chakarbarty, C. Task Offloading in Fog Computing for Using Smart Ant Colony Optimization. Wirel. Pers. Commun. 2021. [Google Scholar] [CrossRef]
- Sahoo, J. Optimal Secure Placement of IoT Applications for Smart Farming. In Proceedings of the 2021 8th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Gandia, Spain, 6–9 December 2021; pp. 1–6. [Google Scholar]
- Sahoo, J. Energy and Load Aware Fog Node Placement for Smart Farming. In International Summit Smart City 360°; Springer: Cham, Switzerland, 2022; pp. 77–91. [Google Scholar]
- Sodhro, A.H.; Zahid, N. AI-Enabled Framework for Fog Computing Driven E-Healthcare Applications. Sensors 2021, 21, 8039. [Google Scholar] [CrossRef]
- Nayeri, Z.M.; Ghafarian, T.; Javadi, B. Application placement in Fog computing with AI approach: Taxonomy and a state of the art survey. J. Netw. Comput. Appl. 2021, 185, 103078. [Google Scholar] [CrossRef]
- Farooq, U.; Shabir, M.W.; Javed, M.A.; Imran, M. Intelligent energy prediction techniques for fog computing networks. Appl. Soft Comput. 2021, 111, 107682. [Google Scholar] [CrossRef]
- Teoh, Y.K.; Gill, S.S.; Parlikad, A.K. IoT and Fog Computing based Predictive Maintenance Model for Effective Asset Management in Industry 4.0 using Machine Learning. IEEE Internet Things J. 2021, 1. [Google Scholar] [CrossRef]
- Tuli, S.; Casale, G.; Jennings, N.R. GOSH: Task Scheduling Using Deep Surrogate Models in Fog Computing Environments. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2821–2833. [Google Scholar] [CrossRef]
- Natesha, B.V.; Guddeti, R.M.R. Adopting elitism-based Genetic Algorithm for minimizing multi-objective problems of IoT service placement in fog computing environment. J. Netw. Comput. Appl. 2021, 178, 102972. [Google Scholar] [CrossRef]
- Attiya, I.; Elaziz, M.A.; Abualigah, L.; Nguyen, T.N.; El-Latif, A.A.A. An Improved Hybrid Swarm Intelligence for Scheduling IoT Application Tasks in the Cloud. IEEE Trans. Ind. Inform. 2022, 18, 6264–6272. [Google Scholar] [CrossRef]
- Potu, N.; Jatoth, C.; Parvataneni, P. Optimizing resource scheduling based on extended particle swarm optimization in fog computing environments. Concurr. Comput. Pract. Exp. 2021, 33, e6163. [Google Scholar] [CrossRef]
- Gu, J.; Mo, J.; Li, B.; Zhang, Y.; Wang, W. A multi-objective fog computing task scheduling strategy based on ant colony algorithm. In Proceedings of the 2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 24–26 September 2021; pp. 12–16. [Google Scholar]
- Yadav, A.M.; Tripathi, K.N.; Sharma, S.C. An Opposition-Based Hybrid Evolutionary Approach for Task Scheduling in Fog Computing Network. Arab. J. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Bansal, S. Performance comparison of five metaheuristic nature-inspired algorithms to find near-OGRs for WDM systems. Artif. Intell. Rev. 2020, 53, 5589–5635. [Google Scholar] [CrossRef]
- Son, D.B.; An, V.T.; Hai, T.T.; Nguyen, B.M.; Le, N.P.; Binh, H.T.T. Fuzzy Deep Q-learning Task Offloading in Delay Constrained Vehicular Fog Computing. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Tu, S.; Waqas, M.; Meng, Y.; Rehman, S.U.; Ahmad, I.; Koubaa, A.; Halim, Z.; Hanif, M.; Chang, C.-C.; Shi, C. Mobile fog computing security: A user-oriented smart attack defense strategy based on DQL. Comput. Commun. 2020, 160, 790–798. [Google Scholar] [CrossRef]
- Jazayeri, F.; Shahidinejad, A.; Ghobaei-Arani, M. Autonomous computation offloading and auto-scaling the in the mobile fog computing: A deep reinforcement learning-based approach. J. Ambient Intell. Humaniz. Comput. 2021, 12, 8265–8284. [Google Scholar] [CrossRef]
- Fu, F.; Kang, Y.; Zhang, Z.; Yu, F.R.; Wu, T. Soft Actor–Critic DRL for Live Transcoding and Streaming in Vehicular Fog-Computing-Enabled IoV. IEEE Internet Things J. 2021, 8, 1308–1321. [Google Scholar] [CrossRef]
- Tuli, S.; Poojara, S.R.; Srirama, S.N.; Casale, G.; Jennings, N.R. COSCO: Container Orchestration Using Co-Simulation and Gradient Based Optimization for Fog Computing Environments. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 101–116. [Google Scholar] [CrossRef]
- Tuli, S.; Casale, G. Optimizing the Performance of Fog Computing Environments Using AI and Co-Simulation. In Proceedings of the Companion of the 2022 ACM/SPEC International Conference on Performance Engineering, Bejing, China, 9–13 April 2022; pp. 25–28. [Google Scholar]
- Liao, R.; Xiong, Y.; Fetaya, E.; Zhang, L.; Yoon, K.; Pitkow, X.; Urtasun, R.; Zemel, R. Reviving and Improving Recurrent Back-Propagation. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 3082–3091. [Google Scholar]
- Jia, Z.; Zaharia, M.; Aiken, A. Beyond Data and Model Parallelism for Deep Neural Networks. Proc. Mach. Learn. Syst. 2019, 1, 13. [Google Scholar]
- Seidu, J.; Ewusi, A.; Kuma, J.S.Y.; Ziggah, Y.Y.; Voigt, H.-J. Impact of data partitioning in groundwater level prediction using artificial neural network for multiple wells. Int. J. River Basin Manag. 2022, 1–12. [Google Scholar] [CrossRef]
- Yu, M.; Jiang, Z.; Ng, H.C.; Wang, W.; Chen, R.; Li, B. Gillis: Serving Large Neural Networks in Serverless Functions with Automatic Model Partitioning. In Proceedings of the 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), Virtual, 7–10 July 2021; pp. 138–148. [Google Scholar]
- Xu, X.; Liu, Q.; Luo, Y.; Peng, K.; Zhang, X.; Meng, S.; Qi, L. A computation offloading method over big data for IoT-enabled cloud-edge computing. Future Gener. Comput. Syst. 2019, 95, 522–533. [Google Scholar] [CrossRef]
- Ran, Y.; Hu, H.; Zhou, X.; Wen, Y. DeepEE: Joint Optimization of Job Scheduling and Cooling Control for Data Center Energy Efficiency Using Deep Reinforcement Learning. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019; pp. 645–655. [Google Scholar]
- Rjoub, G.; Bentahar, J.; Abdel Wahab, O.; Saleh Bataineh, A. Deep and reinforcement learning for automated task scheduling in large-scale cloud computing systems. Concurr. Comput. Pract. Exp. 2021, 33, e5919. [Google Scholar] [CrossRef]
- Shen, S.; Beek, V.V.; Iosup, A. Statistical Characterization of Business-Critical Workloads Hosted in Cloud Datacenters. In Proceedings of the 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Shenzhen, China, 4–7 May 2015; pp. 465–474. [Google Scholar]
- McChesney, J.; Wang, N.; Tanwer, A.; Lara, E.d.; Varghese, B. DeFog: Fog computing benchmarks. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, Arlington, Virginia, 7–9 November 2019; pp. 47–58. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J. Latency-Aware Task Scheduling for IoT Applications Based on Artificial Intelligence with Partitioning in Small-Scale Fog Computing Environments. Sensors 2022, 22, 7326. https://doi.org/10.3390/s22197326
Lim J. Latency-Aware Task Scheduling for IoT Applications Based on Artificial Intelligence with Partitioning in Small-Scale Fog Computing Environments. Sensors. 2022; 22(19):7326. https://doi.org/10.3390/s22197326
Chicago/Turabian StyleLim, JongBeom. 2022. "Latency-Aware Task Scheduling for IoT Applications Based on Artificial Intelligence with Partitioning in Small-Scale Fog Computing Environments" Sensors 22, no. 19: 7326. https://doi.org/10.3390/s22197326
APA StyleLim, J. (2022). Latency-Aware Task Scheduling for IoT Applications Based on Artificial Intelligence with Partitioning in Small-Scale Fog Computing Environments. Sensors, 22(19), 7326. https://doi.org/10.3390/s22197326