Comparative Effectiveness of Artificial Intelligence-Based Interactive Home Exercise Applications in Adolescents with Obesity
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Outcome Measurements
2.3. Super Kids Adventure
2.4. Intervention
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics of Participants
3.2. Calorie consumption and RPE
3.3. Body Mass Index
3.4. VO2 Max and 6-min Walking Test
3.5. Post-Questionnaire for the Motivation, Fun, and Perceived Exercise Effectiveness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Overweight and Obesity; World Health Organization: Geneva, Switzerland, 2020.
- Huizar, M.I.; Arena, R.; Laddu, D.R. The global food syndemic: The impact of food insecurity, Malnutrition and obesity on the healthspan amid the COVID-19 pandemic. Prog. Cardiovasc. Dis. 2021, 64, 105. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, A.V.; Pinti, M.; Farinetti, A.; Nasi, M. Obesity risk during collective quarantine for the COVID-19 epidemic. Obes. Med. 2020, 20, 100263. [Google Scholar] [CrossRef] [PubMed]
- Goodman, W.; Jackson, S.E.; McFerran, E.; Purves, R.; Redpath, I.; Beeken, R.J. Association of Video Game Use With Body Mass Index and Other Energy-Balance Behaviors in Children. JAMA Pediatr. 2020, 174, 563–572. [Google Scholar] [CrossRef]
- Cuschieri, S.; Grech, S. COVID-19: A one-way ticket to a global childhood obesity crisis? J. Diabetes Metab. Disord. 2020, 19, 2027–2030. [Google Scholar] [CrossRef]
- Plavsic, L.; Knezevic, O.M.; Sovtic, A.; Minic, P.; Vukovic, R.; Mazibrada, I.; Stanojlovic, O.; Hrncic, D.; Rasic-Markovic, A.; Macut, D. Effects of high-intensity interval training and nutrition advice on cardiometabolic markers and aerobic fitness in adolescent girls with obesity. Appl. Physiol. Nutr. Metab. 2020, 45, 294–300. [Google Scholar] [CrossRef]
- Lazzer, S.; Tringali, G.; Caccavale, M.; De Micheli, R.; Abbruzzese, L.; Sartorio, A. Effects of high-intensity interval training on physical capacities and substrate oxidation rate in obese adolescents. J. Endocrinol. Investig. 2017, 40, 217–226. [Google Scholar] [CrossRef]
- De Jans, S.; Hudders, L.; Herrewijn, L.; Van Geit, K.; Cauberghe, V. Serious games going beyond the Call of Duty: Impact of an advertising literacy mini-game platform on adolescents’ motivational outcomes through user experiences and learning outcomes. Cyberpsychol. J. Psychosoc. Res. Cyberspace 2019, 13, 3. [Google Scholar] [CrossRef]
- Maddison, R.; Mhurchu, C.N.; Jull, A.; Jiang, Y.; Prapavessis, H.; Rodgers, A. Energy expended playing video console games: An opportunity to increase children’s physical activity? Pediatr. Exerc. Sci. 2007, 19, 334–343. [Google Scholar] [CrossRef]
- Lanningham-Foster, L.; Jensen, T.B.; Foster, R.C.; Redmond, A.B.; Walker, B.A.; Heinz, D.; Levine, J.A. Energy expenditure of sedentary screen time compared with active screen time for children. Pediatrics 2006, 118, e1831–e1835. [Google Scholar] [CrossRef]
- Graves, L.; Stratton, G.; Ridgers, N.D.; Cable, N.T. Comparison of energy expenditure in adolescents when playing new generation and sedentary computer games: Cross sectional study. BMJ 2007, 335, 1282–1284. [Google Scholar]
- Wilmore, J.H.; Costill, D.L.; Kenney, W.L. Physiology of Sport and Exercise; Human kinetics: Champaign, IL, USA, 2004; Volume 20. [Google Scholar]
- Lee, W.; Lee, H.; Lee, S. Calorie Consumption Measurement Platform Using GPS and Activity Recognition Based on Accelerometer in Smartphone; Korean Institute of Information Scientists and Engineers: Seoul, Korea, 2013; pp. 342–344. [Google Scholar]
- Ahn, J.; Kang, U.; Lee, Y.; Lee, B. Improvement of Activity Recognition Based on Learning Model of AI and Wearable Motion Sensors. J. Korea Multimed. Soc. 2018, 21, 982–990. [Google Scholar]
- Shete, A.N.; Bute, S.S.; Deshmukh, P. A study of VO2 max and body fat percentage in female athletes. J. Clin. Diagn. Res. JCDR 2014, 8, BC01. [Google Scholar] [PubMed]
- Mcardle, W.; Katch, F.; Pechar, G.; Jacobson, L.; Ruck, S. Reliability and interrelationships between maximal oxygen intake, physical work capacity and step-test scores in college women. Med. Sci. Sport. 1972, 4, 182–186. [Google Scholar] [CrossRef]
- Mylius, C.; Paap, D.; Takken, T. Reference value for the 6-minute walk test in children and adolescents: A systematic review. Expert Rev. Respir. Med. 2016, 10, 1335–1352. [Google Scholar] [CrossRef]
- Eston, R.; Williams, J. Exercise intensity and perceived exertion in adolescent boys. Br. J. Sport. Med. 1986, 20, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, O. Rating of perceived exertion in children and adolescents: Clinical aspects. In Psychophysics in Action; Springer: Berlin/Heidelberg, Germany, 1989; pp. 105–113. [Google Scholar]
- Nihiser, A.J.; Lee, S.M.; Wechsler, H.; McKenna, M.; Odom, E.; Reinold, C.; Thompson, D.; Grummer-Strawn, L. Body mass index measurement in schools. J. Sch. Health 2007, 77, 651–671. [Google Scholar] [CrossRef] [PubMed]
- Garrouste-Orgeas, M.; Troché, G.; Azoulay, E.; Caubel, A.; de Lassence, A.; Cheval, C.; Montesino, L.; Thuong, M.; Vincent, F.; Cohen, Y. Body mass index. Intensive Care Med. 2004, 30, 437–443. [Google Scholar] [CrossRef]
- An, Y.; Park, C. Effects of a Deep Learning-Based Smartphone Application on Shoulder Abduction Kinematics and Brain Activation in Adhesive Capsulitis: A Randomized Controlled Trial. J. Mech. Med. Biol. 2021, 21, 2140076. [Google Scholar] [CrossRef]
- Sato, T.; Shimizu, K.; Shiko, Y.; Kawasaki, Y.; Orita, S.; Inage, K.; Shiga, Y.; Suzuki, M.; Sato, M.; Enomoto, K. Effects of Nintendo Ring Fit Adventure Exergame on Pain and Psychological Factors in Patients with Chronic Low Back Pain. Games Health J. 2021, 10, 158–164. [Google Scholar] [CrossRef]
- Unnithan, V.B.; Houser, W.; Fernhall, B. Evaluation of the energy cost of playing a dance simulation video game in overweight and non-overweight children and adolescents. Int. J. Sport. Med. 2006, 27, 804–809. [Google Scholar] [CrossRef]
- Comeras-Chueca, C.; Villalba-Heredia, L.; Pérez-Llera, M.; Lozano-Berges, G.; Marín-Puyalto, J.; Vicente-Rodríguez, G.; Matute-Llorente, Á.; Casajús, J.A.; González-Agüero, A. Assessment of Active Video Games’ Energy Expenditure in Children with Overweight and Obesity and Differences by Gender. Int. J. Environ. Res. Public Health 2020, 17, 6714. [Google Scholar] [CrossRef] [PubMed]
- Biddiss, E.; Irwin, J. Active video games to promote physical activity in children and youth: A systematic review. Arch. Pediatr. Adolesc. Med. 2010, 164, 664–672. [Google Scholar] [CrossRef] [PubMed]
- O’donovan, C.; Roche, E.; Hussey, J. The energy cost of playing active video games in children with obesity and children of a healthy weight. Pediatr. Obes. 2014, 9, 310–317. [Google Scholar] [CrossRef]
- Smallwood, S.R.; Morris, M.M.; Fallows, S.J.; Buckley, J.P. Physiologic responses and energy expenditure of kinect active video game play in schoolchildren. Arch. Pediatr. Adolesc. Med. 2012, 166, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Canabrava, K.L.; Faria, F.R.; Lima, J.R.d.; Guedes, D.P.; Amorim, P.R. Energy expenditure and intensity of active video games in children and adolescents. Res. Q. Exerc. Sport 2018, 89, 47–56. [Google Scholar] [CrossRef]
- Dickinson, K.; Place, M. A randomised control trial of the impact of a computer-based activity programme upon the fitness of children with autism. Autism Res. Treat. 2014, 2014, 419653. [Google Scholar] [CrossRef] [PubMed]
- Adamo, K.B.; Rutherford, J.A.; Goldfield, G.S. Effects of interactive video game cycling on overweight and obese adolescent health. Appl. Physiol. Nutr. Metab. 2010, 35, 805–815. [Google Scholar] [CrossRef]
- Maddison, R.; Foley, L.; Ni Mhurchu, C.; Jiang, Y.; Jull, A.; Prapavessis, H.; Hohepa, M.; Rodgers, A. Effects of active video games on body composition: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 94, 156–163. [Google Scholar] [CrossRef] [Green Version]
Activity | Speed (λ, km/h) | METs |
---|---|---|
Stay | - | 1.3 |
Walking | λ ≤ 1.0 | 2.0 |
1.0 < λ ≤ 1.5 | 2.8 | |
1.5 < λ ≤ 4.0 | 3.5 | |
4.0 < λ ≤ 5.0 | 5.0 | |
5.0 < λ ≤ 6.4 | 6.0 | |
Jogging | 6.4 < λ ≤ 7.3 | 8.0 |
7.3 < λ ≤ 8.0 | 10.0 | |
8.0 < λ ≤ 9.6 | 13.5 | |
9.6 < λ ≤ 11.2 | 16.0 | |
11.2 < λ | 18.0 |
Characteristics | SUKIA a (n = 12) | NINS b (n = 12) | p-Value |
---|---|---|---|
Age (years) | 13.58 ± 1.44 | 13.08 ± 2.35 | 0.08 |
Gender (%) | |||
Female | 2 (16.67%) | 2 (16.67%) | 1.000 |
Male | 10 (83.33%) | 10 (83.33%) | |
Height (cm) | 135.75 ± 8.81 | 136.83 ± 7.55 | 0.88 |
Weight (kg) | 46.42 ± 7.63 | 47.17 ± 7.61 | 0.65 |
BMI (kg/m2) | 24.99 ± 1.35 | 25.03 ± 1.92 | 0.06 |
SUKIA a | NINS b | p-Value | |
---|---|---|---|
Calorie consumption | 455.75 ± 50.42 | 405.42 ± 54.29 | 0.03 * |
RPE c | 12.58 ± 2.50 | 11.17 ± 1.75 | 0.04 * |
Body Mass Index (kg/m2) | SUKIA a | NINS b | Time Effect | Group Effect | Time x Group Interaction |
---|---|---|---|---|---|
Pre | 24.99 ± 1.35 | 25.03 ± 1.92 | 0.001 * | 0.768 | 0.496 |
Post | 23.93 ± 1.83 | 24.29 ± 1.83 |
Pre-Test | Post-Test | Time Effect | Group Effect | Time x Group Interaction | ||
---|---|---|---|---|---|---|
VO2 max (mL/kg/min) | SUKIA a | 28.85 ± 2.92 | 30.62 ± 2.98 | 0.001 * | 0.150 | 0.005 * |
NINS b | 28.98 ± 2.35 | 29.28 ± 2.43 | ||||
6MWT (meter) | SUKIA a | 521.83 ± 22.72 | 545.50 ± 22.84 | 0.001 * | 0.039 * | 0.361 |
NINS b | 495.75 ± 31.15 | 526.42 ± 29.59 |
SUKIA a | NINS b | p-Value | |
---|---|---|---|
Motivation | 7.80 ± 1.20 | 7 ± 1.40 | 0.57 |
Fun | 8.78 ± 0.67 | 7.93 ± 1.30 | 0.34 |
Perceived exercise effectiveness | 8.50 ± 0.57 | 8.00 ± 1.00 | 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, W.; An, Y.; Min, S.; Park, C. Comparative Effectiveness of Artificial Intelligence-Based Interactive Home Exercise Applications in Adolescents with Obesity. Sensors 2022, 22, 7352. https://doi.org/10.3390/s22197352
Oh W, An Y, Min S, Park C. Comparative Effectiveness of Artificial Intelligence-Based Interactive Home Exercise Applications in Adolescents with Obesity. Sensors. 2022; 22(19):7352. https://doi.org/10.3390/s22197352
Chicago/Turabian StyleOh, Wonjun, Yeongsang An, Seunghwa Min, and Chanhee Park. 2022. "Comparative Effectiveness of Artificial Intelligence-Based Interactive Home Exercise Applications in Adolescents with Obesity" Sensors 22, no. 19: 7352. https://doi.org/10.3390/s22197352
APA StyleOh, W., An, Y., Min, S., & Park, C. (2022). Comparative Effectiveness of Artificial Intelligence-Based Interactive Home Exercise Applications in Adolescents with Obesity. Sensors, 22(19), 7352. https://doi.org/10.3390/s22197352