Estimating Regional Methane Emission Factors from Energy and Agricultural Sector Sources Using a Portable Measurement System: Case Study of the Denver–Julesburg Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Driving Survey
2.2. Source Detection
2.3. Quantifying Emissions
2.3.1. Point Sources
Model Input
Uncertainties
2.3.2. Area Sources
3. Results
3.1. Uncertainty Analysis
3.2. Sources Detected
3.3. Emissions
3.4. Representative Published Emission
3.5. Driving Survey EFs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dlugokencky, E.J. Trends in Atmospheric Methane. In Global CH4 Monthly Means; NOAA/GML: Silver Spring, MD, USA, 2020. [Google Scholar]
- NOAA ESRL. Global Monitoring Division—Global Greenhouse Gas Reference Network. Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/ (accessed on 14 June 2019).
- Turner, A.J.; Frankenberg, C.; Kort, E.A. Interpreting Contemporary Trends in Atmospheric Methane. Proc. Natl. Acad. Sci. USA 2019, 116, 2805–2813. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Fisher, R.E.; Lowry, D.; France, J.L.; Allen, G.; Bakkaloglu, S.; Broderick, T.J.; Cain, M.; Coleman, M.; Fernandez, J.; et al. Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Rev. Geophys. 2020, 58, e2019RG000675. [Google Scholar] [CrossRef]
- BEIS. UK Greenhouse Gas Emissions Statistics 2018. Historical UK Greenhouse Gas Emissions. Available online: https://www.gov.uk/government/collections/uk-greenhouse-gas-emissions-statistics (accessed on 11 November 2021).
- DEFRA. UK National Atmospheric Emissions Inventory (NAEI) Data—Defra, UK. 2021. Available online: https://naei.beis.gov.uk/data/ (accessed on 1 April 2021).
- US EPA. GHGRP Reported Data. Available online: https://www.epa.gov/ghgreporting/ghgrp-reported-data (accessed on 21 January 2020).
- Caulton, D.R.; Shepson, P.B.; Santoro, R.L.; Sparks, J.P.; Howarth, R.W.; Ingraffea, A.R.; Cambaliza, M.O.L.; Sweeney, C.; Karion, A.; Davis, K.J.; et al. Toward a Better Understanding and Quantification of Methane Emissions from Shale Gas Development. Proc. Natl. Acad. Sci. USA 2014, 111, 6237–6242. [Google Scholar] [CrossRef] [PubMed]
- Cerri, C.E.P.; You, X.; Cherubin, M.R.; Moreira, C.S.; Raucci, G.S.; de Castigioni, B.A.; Alves, P.A.; Cerri, D.G.P.; de Mello, F.F.C.; Cerri, C.C. Assessing the Greenhouse Gas Emissions of Brazilian Soybean Biodiesel Production. PLoS ONE 2017, 12, e0176948. [Google Scholar] [CrossRef] [PubMed]
- Nisbet, E.; Weiss, R. Top-Down Versus Bottom-Up. Science 2010, 328, 1241–1243. [Google Scholar] [CrossRef]
- Riddick, S.N.; Mauzerall, D.L.; Celia, M.A.; Kang, M.; Bressler, K.; Chu, C.; Gum, C.D. Measuring Methane Emissions from Abandoned and Active Oil and Gas Wells in West Virginia. Sci. Total Environ. 2019, 651, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Riddick, S.N.; Mauzerall, D.L.; Celia, M.; Harris, N.R.P.; Allen, G.; Pitt, J.; Staunton-Sykes, J.; Forster, G.L.; Kang, M.; Lowry, D.; et al. Methane Emissions from Oil and Gas Platforms in the North Sea. Atmos. Chem. Phys. 2019, 19, 9787–9796. [Google Scholar] [CrossRef]
- Turner, D.A.; Williams, I.D.; Kemp, S. Greenhouse Gas Emission Factors for Recycling of Source-Segregated Waste Materials. Resour. Conserv. Recycl. 2015, 105, 186–197. [Google Scholar] [CrossRef]
- Vaughn, T.L.; Bell, C.S.; Pickering, C.K.; Schwietzke, S.; Heath, G.A.; Pétron, G.; Zimmerle, D.J.; Schnell, R.C.; Nummedal, D. Temporal Variability Largely Explains Top-down/Bottom-up Difference in Methane Emission Estimates from a Natural Gas Production Region. Proc. Natl. Acad. Sci. USA 2018, 115, 11712–11717. [Google Scholar] [CrossRef]
- Yang, W.-B.; Yuan, C.-S.; Chen, W.-H.; Yang, Y.-H.; Hung, C.-H. Diurnal Variation of Greenhouse Gas Emission from Petrochemical Wastewater Treatment Processes Using In-Situ Continuous Monitoring System and the Associated Effect on Emission Factor Estimation. Aerosol Air Qual. Res. 2017, 17, 2608–2623. [Google Scholar] [CrossRef] [Green Version]
- Baillie, J.; Risk, D.; Atherton, E.; O’Connell, E.; Fougère, C.; Bourlon, E.; MacKay, K. Methane Emissions from Conventional and Unconventional Oil and Gas Production Sites in Southeastern Saskatchewan, Canada. Environ. Res. Commun. 2019, 1, 011003. [Google Scholar] [CrossRef]
- Riddick, S.N.; Mauzerall, D.L.; Celia, M.; Allen, G.; Pitt, J.; Kang, M.; Riddick, J.C. The Calibration and Deployment of a Low-Cost Methane Sensor. Atmos. Environ. 2020, 230, 117440. [Google Scholar] [CrossRef]
- Edie, R.; Robertson, A.M.; Field, R.A.; Soltis, J.; Snare, D.A.; Zimmerle, D.; Bell, C.S.; Vaughn, T.L.; Murphy, S.M. Constraining the Accuracy of Flux Estimates Using OTM 33A. Atmos. Meas. Tech. 2020, 13, 341–353. [Google Scholar] [CrossRef]
- Bell, C.S.; Vaughn, T.L.; Zimmerle, D.; Herndon, S.C.; Yacovitch, T.I.; Heath, G.A.; Pétron, G.; Edie, R.; Field, R.A.; Murphy, S.M.; et al. Comparison of Methane Emission Estimates from Multiple Measurement Techniques at Natural Gas Production Pads. Elem. Sci. Anthr. 2017, 5, 79. [Google Scholar] [CrossRef]
- Riddick, S.N.; Connors, S.; Robinson, A.D.; Manning, A.J.; Jones, P.S.D.; Lowry, D.; Nisbet, E.; Skelton, R.L.; Allen, G.; Pitt, J.; et al. Estimating the Size of a Methane Emission Point Source at Different Scales: From Local to Landscape. Atmos. Chem. Phys. 2017, 17, 7839–7851. [Google Scholar] [CrossRef]
- Denmead, O.T. Approaches to Measuring Fluxes of Methane and Nitrous Oxide between Landscapes and the Atmosphere. Plant Soil 2008, 309, 5–24. [Google Scholar] [CrossRef]
- Flesch, T.K.; Wilson, J.D.; Yee, E. Backward-Time Lagrangian Stochastic Dispersion Models and Their Application to Estimate Gaseous Emissions. J. Appl. Meteor. 1995, 34, 1320–1332. [Google Scholar] [CrossRef]
- Allen, D.T.; Torres, V.M.; Thomas, J.; Sullivan, D.W.; Harrison, M.; Hendler, A.; Herndon, S.C.; Kolb, C.E.; Fraser, M.P.; Hill, A.D.; et al. Measurements of Methane Emissions at Natural Gas Production Sites in the United States. Proc. Natl. Acad. Sci. USA 2013, 110, 17768–17773. [Google Scholar] [CrossRef]
- Lamb, B.K.; McManus, J.B.; Shorter, J.H.; Kolb, C.E.; Mosher, B.; Harriss, R.C.; Allwine, E.; Blaha, D.; Howard, T.; Guenther, A.; et al. Development of Atmospheric Tracer Methods to Measure Methane Emissions from Natural Gas Facilities and Urban Areas. Environ. Sci. Technol. 1995, 29, 1468–1479. [Google Scholar] [CrossRef]
- Subramanian, R.; Williams, L.L.; Vaughn, T.L.; Zimmerle, D.; Roscioli, J.R.; Herndon, S.C.; Yacovitch, T.I.; Floerchinger, C.; Tkacik, D.S.; Mitchell, A.L.; et al. Methane Emissions from Natural Gas Compressor Stations in the Transmission and Storage Sector: Measurements and Comparisons with the EPA Greenhouse Gas Reporting Program Protocol. Environ. Sci. Technol. 2015, 49, 3252–3261. [Google Scholar] [CrossRef] [Green Version]
- Allen, G.; Hollingsworth, P.; Kabbabe, K.; Pitt, J.R.; Mead, M.I.; Illingworth, S.; Roberts, G.; Bourn, M.; Shallcross, D.E.; Percival, C.J. The Development and Trial of an Unmanned Aerial System for the Measurement of Methane Flux from Landfill and Greenhouse Gas Emission Hotspots. Waste Manag. 2019, 87, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Conley, S.; Faloona, I.; Mehrotra, S.; Suard, M.; Lenschow, D.H.; Sweeney, C.; Herndon, S.; Schwietzke, S.; Pétron, G.; Pifer, J.; et al. Application of Gauss’s Theorem to Quantify Localized Surface Emissions from Airborne Measurements of Wind and Trace Gases. Atmos. Meas. Tech. 2017, 10, 3345–3358. [Google Scholar] [CrossRef]
- Johnson, M.R.; Tyner, D.R.; Conley, S.; Schwietzke, S.; Zavala-Araiza, D. Comparisons of Airborne Measurements and Inventory Estimates of Methane Emissions in the Alberta Upstream Oil and Gas Sector. Environ. Sci. Technol. 2017, 51, 13008–13017. [Google Scholar] [CrossRef]
- Corbett, A.; Smith, B. A Study of a Miniature TDLAS System Onboard Two Unmanned Aircraft to Independently Quantify Methane Emissions from Oil and Gas Production Assets and Other Industrial Emitters. Atmosphere 2022, 13, 804. [Google Scholar] [CrossRef]
- Duren, R.M.; Thorpe, A.K.; Foster, K.T.; Rafiq, T.; Hopkins, F.M.; Yadav, V.; Bue, B.D.; Thompson, D.R.; Conley, S.; Colombi, N.K.; et al. California’s Methane Super-Emitters. Nature 2019, 575, 180–184. [Google Scholar] [CrossRef]
- Sherwin, E.D.; Chen, Y.; Ravikumar, A.P.; Brandt, A.R. Single-Blind Test of Airplane-Based Hyperspectral Methane Detection via Controlled Releases. Elem. Sci. Anthr. 2021, 9, 63. [Google Scholar] [CrossRef]
- Cooper, J.; Dubey, L.; Hawkes, A. Methane Detection and Quantification in the Upstream Oil and Gas Sector: The Role of Satellites in Emissions Detection, Reconciling and Reporting. Environ. Sci. Atmos. 2022, 2, 9–23. [Google Scholar] [CrossRef]
- Cambaliza, M.O.L.; Shepson, P.B.; Caulton, D.R.; Stirm, B.; Samarov, D.; Gurney, K.R.; Turnbull, J.; Davis, K.J.; Possolo, A.; Karion, A.; et al. Assessment of Uncertainties of an Aircraft-Based Mass Balance Approach for Quantifying Urban Greenhouse Gas Emissions. Atmos. Chem. Phys. 2014, 14, 9029–9050. [Google Scholar] [CrossRef]
- Heimburger, A.M.F.; Harvey, R.M.; Shepson, P.B.; Stirm, B.H.; Gore, C.; Turnbull, J.; Cambaliza, M.O.L.; Salmon, O.E.; Kerlo, A.-E.M.; Lavoie, T.N.; et al. Assessing the Optimized Precision of the Aircraft Mass Balance Method for Measurement of Urban Greenhouse Gas Emission Rates through Averaging. Elem. Sci. Anthr. 2017, 5, 26. [Google Scholar] [CrossRef]
- Atherton, E.; Risk, D.; Fougère, C.; Lavoie, M.; Marshall, A.; Werring, J.; Williams, J.P.; Minions, C. Mobile Measurement of Methane Emissions from Natural Gas Developments in Northeastern British Columbia, Canada. Atmos. Chem. Phys. 2017, 17, 12405–12420. [Google Scholar] [CrossRef] [Green Version]
- Caulton, D.R.; Lu, J.M.; Lane, H.M.; Buchholz, B.; Fitts, J.P.; Golston, L.M.; Guo, X.; Li, Q.; McSpiritt, J.; Pan, D.; et al. Importance of Superemitter Natural Gas Well Pads in the Marcellus Shale. Environ. Sci. Technol. 2019, 53, 4747–4754. [Google Scholar] [CrossRef]
- MacKay, K.; Lavoie, M.; Bourlon, E.; Atherton, E.; O’Connell, E.; Baillie, J.; Fougère, C.; Risk, D. Methane Emissions from Upstream Oil and Gas Production in Canada Are Underestimated. Sci. Rep. 2021, 11, 8041. [Google Scholar] [CrossRef] [PubMed]
- Albertson, J.D.; Harvey, T.; Foderaro, G.; Zhu, P.; Zhou, X.; Ferrari, S.; Amin, M.S.; Modrak, M.; Brantley, H.; Thoma, E.D. A Mobile Sensing Approach for Regional Surveillance of Fugitive Methane Emissions in Oil and Gas Production. Environ. Sci. Technol. 2016, 50, 2487–2497. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, E.; Risk, D.; Atherton, E.; Bourlon, E.; Fougère, C.; Baillie, J.; Lowry, D.; Johnson, J. Methane Emissions from Contrasting Production Regions within Alberta, Canada: Implications under Incoming Federal Methane Regulations. Elem. Sci. Anthr. 2019, 7, 3. [Google Scholar] [CrossRef]
- Ražnjević, A.; van Heerwaarden, C.; Krol, M. Evaluation of Two Common Source Estimation Measurement Strategies Using Large-Eddy Simulation of Plume Dispersion under Neutral Atmospheric Conditions. Atmos. Meas. Tech. Discuss. 2022, 15, 3611–3628. [Google Scholar] [CrossRef]
- Carpenter, L.C. Florence-Canyon City Field. In Colorado-Nebraska Oil and Gas Field Volume; Rocky Mountain Association of Geologists: Denver, CO, USA, 1961; pp. 130–131. [Google Scholar]
- Helmig, D. Air Quality Impacts from Oil and Natural Gas Development in Colorado. Elem. Sci. Anthr. 2020, 8, 4. [Google Scholar] [CrossRef]
- Pétron, G.; Karion, A.; Sweeney, C.; Miller, B.R.; Montzka, S.A.; Frost, G.J.; Trainer, M.; Tans, P.; Andrews, A.; Kofler, J.; et al. A New Look at Methane and Nonmethane Hydrocarbon Emissions from Oil and Natural Gas Operations in the Colorado Denver-Julesburg Basin. J. Geophys. Res. Atmos. 2014, 119, 6836–6852. [Google Scholar] [CrossRef]
- Paul, J.B.; Lapson, L.; Anderson, J.G. Ultrasensitive Absorption Spectroscopy with a High-Finesse Optical Cavity and off-Axis Alignment. Appl. Opt. 2001, 40, 4904. [Google Scholar] [CrossRef]
- O’Haver, T. A Pragmatic Introduction to Signal Processing with Applications in Scientific Measurement. Peak Finding and Measurement. 2022. Available online: https://terpconnect.umd.edu/~toh/Spectrum/PeakFindingandMeasurement.htm (accessed on 1 February 2022).
- US EPA. Industrial Source Complex (ISC3) Dispersion Model; User’s Guide. EPA 454/B 95 003a (Vol. I) and EPA 454/B 95 003b (Vol. II); U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 1995.
- Flesch, T.; Wilson, J.; Harper, L.; Crenna, B. Estimating Gas Emissions from a Farm with an Inverse-Dispersion Technique. Atmos. Environ. 2005, 39, 4863–4874. [Google Scholar] [CrossRef]
- Riddick, S.N.; Blackall, T.D.; Dragosits, U.; Daunt, F.; Newell, M.; Braban, C.F.; Tang, Y.S.; Schmale, J.; Hill, P.W.; Wanless, S.; et al. Measurement of Ammonia Emissions from Temperate and Sub-Polar Seabird Colonies. Atmos. Environ. 2016, 134, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Riddick, S.N.; Blackall, T.D.; Dragosits, U.; Daunt, F.; Braban, C.F.; Tang, Y.S.; MacFarlane, W.; Taylor, S.; Wanless, S.; Sutton, M.A. Measurement of Ammonia Emissions from Tropical Seabird Colonies. Atmos. Environ. 2014, 89, 35–42. [Google Scholar] [CrossRef]
- Flesch, T.K.; Harper, L.A.; Powell, J.M.; Wilson, J.D. Inverse-Dispersion Calculation of Ammonia Emissions from Wisconsin Dairy Farms. Trans. ASABE 2009, 52, 253–265. [Google Scholar] [CrossRef]
- Todd, R.W.; Cole, N.A.; Clark, R.N.; Flesch, T.K.; Harper, L.A.; Baek, B.H. Ammonia Emissions from a Beef Cattle Feedyard on the Southern High Plains. Atmos. Environ. 2008, 42, 6797–6805. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; ISBN 978-1-118-94740-1. [Google Scholar]
- Busse, A.D.; Zimmerman, J.R. User’s Guide for the Climatological Dispersion Model; National Environmental Research Center, Office of Research and Development, U.S. Environmental Protection Agency: Washington, DC, USA, 1973.
- Pasquill, F.; Smith, F.B. Atmospheric Diffusion, 3rd ed.; Ellis Horwood: Chichester, UK; John Wiley & Sons: Hoboken, NJ, USA, 1983; Volume 110. [Google Scholar]
- Laubach, J.; Kelliher, F.M.; Knight, T.W.; Clark, H.; Molano, G.; Cavanagh, A. Methane Emissions from Beef Cattle—A Comparison of Paddock- and Animal-Scale Measurements. Aust. J. Exp. Agric. 2008, 48, 132. [Google Scholar] [CrossRef]
- Sommer, S.G.; McGinn, S.M.; Flesch, T.K. Simple Use of the Backwards Lagrangian Stochastic Dispersion Technique for Measuring Ammonia Emission from Small Field-Plots. Eur. J. Agron. 2005, 23, 1–7. [Google Scholar] [CrossRef]
- Riddick, S.N.; Ancona, R.; Bell, C.S.; Duggan, A.; Vaughn, T.L.; Bennett, K.; Zimmerle, D.J. Quantitative Comparison of Methods Used to Estimate Methane Emissions from Small Point Sources. Atmos. Meas. Tech. Discuss. 2022. preprint. [Google Scholar] [CrossRef]
- Fischer, M.L.; Chan, W.R.; Delp, W.; Jeong, S.; Rapp, V.; Zhu, Z. An Estimate of Natural Gas Methane Emissions from California Homes. Environ. Sci. Technol. 2018, 52, 10205–10213. [Google Scholar] [CrossRef]
- Lebel, E.D.; Lu, H.S.; Speizer, S.A.; Finnegan, C.J.; Jackson, R.B. Quantifying Methane Emissions from Natural Gas Water Heaters. Environ. Sci. Technol. 2020, 54, 5737–5745. [Google Scholar] [CrossRef]
- Zimmerle, D.J.; Williams, L.L.; Vaughn, T.L.; Quinn, C.; Subramanian, R.; Duggan, G.P.; Willson, B.; Opsomer, J.D.; Marchese, A.J.; Martinez, D.M.; et al. Methane Emissions from the Natural Gas Transmission and Storage System in the United States. Environ. Sci. Technol. 2015, 49, 9374–9383. [Google Scholar] [CrossRef]
- Golston, L.M.; Pan, D.; Sun, K.; Tao, L.; Zondlo, M.A.; Eilerman, S.J.; Peischl, J.; Neuman, J.A.; Floerchinger, C. Variability of Ammonia and Methane Emissions from Animal Feeding Operations in Northeastern Colorado. Environ. Sci. Technol. 2020, 54, 11015–11024. [Google Scholar] [CrossRef]
- Schmiedeskamp, M.; Praetzel, L.S.E.; Bastviken, D.; Knorr, K. Whole-lake Methane Emissions from Two Temperate Shallow Lakes with Fluctuating Water Levels: Relevance of Spatiotemporal Patterns. Limnol. Oceanogr. 2021, 66, 2455–2469. [Google Scholar] [CrossRef]
- Marchese, A.J.; Vaughn, T.L.; Zimmerle, D.J.; Martinez, D.M.; Williams, L.L.; Robinson, A.L.; Mitchell, A.L.; Subramanian, R.; Tkacik, D.S.; Roscioli, J.R.; et al. Methane Emissions from United States Natural Gas Gathering and Processing. Environ. Sci. Technol. 2015, 49, 10718–10727. [Google Scholar] [CrossRef] [PubMed]
- Zimmerle, D.; Vaughn, T.; Luck, B.; Lauderdale, T.; Keen, K.; Harrison, M.; Marchese, A.; Williams, L.; Allen, D. Methane Emissions from Gathering Compressor Stations in the U.S. Environ. Sci. Technol. 2020, 54, 7552–7561. [Google Scholar] [CrossRef] [PubMed]
- Brantley, H.L.; Thoma, E.D.; Squier, W.C.; Guven, B.B.; Lyon, D. Assessment of Methane Emissions from Oil and Gas Production Pads Using Mobile Measurements. Environ. Sci. Technol. 2014, 48, 14508–14515. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.L.; Tkacik, D.S.; Roscioli, J.R.; Herndon, S.C.; Yacovitch, T.I.; Martinez, D.M.; Vaughn, T.L.; Williams, L.L.; Sullivan, M.R.; Floerchinger, C.; et al. Measurements of Methane Emissions from Natural Gas Gathering Facilities and Processing Plants: Measurement Results. Environ. Sci. Technol. 2015, 49, 3219–3227. [Google Scholar] [CrossRef] [PubMed]
- Nathan, B.J.; Golston, L.M.; O’Brien, A.S.; Ross, K.; Harrison, W.A.; Tao, L.; Lary, D.J.; Johnson, D.R.; Covington, A.N.; Clark, N.N.; et al. Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft. Environ. Sci. Technol. 2015, 49, 7896–7903. [Google Scholar] [CrossRef] [PubMed]
- Riddick, S.N.; Ancona, R.; Cheptonui, F.; Bell, C.S.; Duggan, A.; Bennett, K.E.; Zimmerle, D.J. A Cautionary Report of Calculating Methane Emissions Using Low-Cost Fence-Line Sensors. Elem. Sci. Anthr. 2022, 10, 21. [Google Scholar] [CrossRef]
Sector | Number of Sources Sampled | Number of Plumes Detected | Total Emission (kg h−1) | Average Emission (kg Facility−1 h−1) |
---|---|---|---|---|
Agriculture | 82 | 82 | 2326 | |
Feedlot cattle | 42 | 42 | 679 | 29.5 (47.2, 11.8) |
Dairy | 20 | 20 | 1540 | 77.0 (123.2, 30.8) |
Livestock | 23 | 23 | 35 | 1.5 (2.4, 0.6) |
Irrigation ponds | 14 | 14 | 21 | 1.5 (2.4, 0.6) |
Sheep | 2 | 2 | 50 | 25.1 (40.2, 10.0) |
Natural | 6 | 6 | 362 | |
Reservoirs | 5 | 5 | 232 | 46.5 (74.4, 18.6) |
Lakes | 1 | 1 | 130 | 129.7 (207.5, 51.9) |
Oil and Gas | 444 * | 69 | 1307 | |
Compressor Station | 2 | 2 | 28 | 14.0 (22.4, 5.6) |
Gas Plant | 10 | 10 | 1097 | 109.7 (175.5, 43.9) |
Pipelines | 3 | 61 | 20.2 (32.3, 8.1) | |
Well pads | 432 | 54 | 121 | 0.28 (0.45, 0.11) |
Total | 157 | 3995 |
Source | EF Unit | Published EF | Driving Survey EF | Activity (Count) | Emission (Mg h−1) | Emission (Gg y−1) |
---|---|---|---|---|---|---|
Cattle | g CH4 head−1 h−1 | 9.4 | 5.3 (2.1–8.5) | 409,550 | 2.2 | 19 |
Dairy | g CH4 head−1 h−1 | 39.3 | 31 (12–50) | 184,463 | 5.7 | 50 |
Sheep | g CH4 head−1 h−1 | 0.9 | 0.9 (0.4–1.4) | 27,000 | 0.02 | 0.2 |
Lakes | mg CH4 m−2 h−1 | 2 | 15 (6–24) | |||
Comp | kg CH4 facility−1 h−1 | 9 | 14 (6–22) | 64 | 0.9 | 8 |
Gas plant | kg CH4 facility−1 h−1 | 237 | 110 (44–176) | 29 | 3.2 | 28 |
Well pad | g CH4 facility−1 h−1 | 504 | 280 (112–448) | 8176 | 2.3 | 20 |
Total | 125 (63–250) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riddick, S.N.; Cheptonui, F.; Yuan, K.; Mbua, M.; Day, R.; Vaughn, T.L.; Duggan, A.; Bennett, K.E.; Zimmerle, D.J. Estimating Regional Methane Emission Factors from Energy and Agricultural Sector Sources Using a Portable Measurement System: Case Study of the Denver–Julesburg Basin. Sensors 2022, 22, 7410. https://doi.org/10.3390/s22197410
Riddick SN, Cheptonui F, Yuan K, Mbua M, Day R, Vaughn TL, Duggan A, Bennett KE, Zimmerle DJ. Estimating Regional Methane Emission Factors from Energy and Agricultural Sector Sources Using a Portable Measurement System: Case Study of the Denver–Julesburg Basin. Sensors. 2022; 22(19):7410. https://doi.org/10.3390/s22197410
Chicago/Turabian StyleRiddick, Stuart N., Fancy Cheptonui, Kexin Yuan, Mercy Mbua, Rachel Day, Timothy L. Vaughn, Aidan Duggan, Kristine E. Bennett, and Daniel J. Zimmerle. 2022. "Estimating Regional Methane Emission Factors from Energy and Agricultural Sector Sources Using a Portable Measurement System: Case Study of the Denver–Julesburg Basin" Sensors 22, no. 19: 7410. https://doi.org/10.3390/s22197410
APA StyleRiddick, S. N., Cheptonui, F., Yuan, K., Mbua, M., Day, R., Vaughn, T. L., Duggan, A., Bennett, K. E., & Zimmerle, D. J. (2022). Estimating Regional Methane Emission Factors from Energy and Agricultural Sector Sources Using a Portable Measurement System: Case Study of the Denver–Julesburg Basin. Sensors, 22(19), 7410. https://doi.org/10.3390/s22197410