WSNEAP: An Efficient Authentication Protocol for IIoT-Oriented Wireless Sensor Networks
Abstract
:1. Introduction
1.1. Contribution
- The PUF chip is introduced in the protocol, and the challenge–response pairs generated by the PUF chip are saved and queried using Bloom filters. On the premise of ensuring the security of the physical layer of the device, the protocol reduces the computational cost of the wireless sensor side. The protocol introduces a pre-authentication mechanism, and the gateway and the cloud server are continuously authenticated. The pre-authentication mechanism reduces the overall computational cost of the protocol and improves the network communication model. Based on the same communication model, the introduction of a pre-authentication mechanism can reduce the number of communications.
- We carried out informal security analysis and formal security analysis of our proposed protocol through the Automated Validation of Internet Security-Sensitive Protocols and Applications (AVISPA) tool. The results, when compared with related work, show that our proposed protocol has more security properties.
- We implemented various security primitives using the MIRACL cryptographic library and GMP large number library. Our proposed protocol makes an in-depth comparison with related work. Detailed experiments show that our proposed protocol significantly reduces the computational cost and communication cost on the wireless sensor side and the overall computational cost of the protocol.
1.2. Paper Organization
2. Related Works
3. Preliminaries
3.1. Physically Unclonable Function
3.2. Bloom Filter
3.3. Communication Network Model
3.4. Adversary Model
- The attacker can forge, eavesdrop, tamper, and replay communication information between the wireless sensor and gateway, and the gateway and cloud server.
- The attacker can intercept and store the messages sent by both sides of the communication.
- The attacker can participate in the operation of the protocol as a legitimate entity.
3.5. Assumption
- Based on the actual IIoT application scenario, we assume that the cloud server is the only trusted institution to store confidential information. In this communication network model, only the cloud server is subject to advanced protection means such as physical isolation and professional security maintenance team. We treat the gateway as an untrusted party for two main reasons. Firstly, application software is installed in the gateway, and there may be loopholes in these application software. Secondly, the gateway may not have professional maintenance personnel, or the level of professional maintenance personnel may be insufficient.
- Each wireless sensor and gateway has its own PUF chip.
- The process of sending and receiving data in the registration phase is strictly protected. The attacker cannot obtain confidential information from the registration phase and cannot impersonate a legitimate device to register.
3.6. Symbol
4. Protocol Design
4.1. Registration Stage
4.2. Initialization Stage
Algorithm 1 Initiation. |
|
4.3. Wireless Sensor Authentication and Key Negotiation Phase
Algorithm 2 Wireless sensor authentication and key negotiation. |
|
5. Security Evaluation
5.1. Informal Security Analysis
5.2. Validation of Automated Analysis Tools for Formal Security Protocols
5.3. Comparison of Security Features
6. Performance Evaluation
6.1. Comparison of Computational Costs of Wireless Sensors
6.2. Comparison of the Communication Cost of Wireless Sensors
6.3. Comparison of Total Computational Cost of Protocols
6.4. Comparison of Total Communication Costs of Protocols
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, X.; Ni, Y.; Gu, L.; Zhu, H. Blockchain for the IoT and industrial IoT: A review. Internet Things 2020, 10, 100081. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, D.; Obaidat, M.S.; Vijayakumar, P. Edge-assisted intelligent device authentication in cyber-physical systems. IEEE Internet Things J. 2022. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, G.; Li, L.; Yang, Y. Robust privacy-preserving mutual authenticated key agreement scheme in roaming service for global mobility networks. IEEE Syst. J. 2019, 13, 1454–1465. [Google Scholar] [CrossRef]
- Karmakar, A.; Dey, N.; Baral, T.; Chowdhury, M.; Rehan, M. Industrial internet of things: A review. In Proceedings of the 2019 IEEE International Conference on Opto-Electronics and Applied Optics (Optronix), Kolkata, India, 18–20 March 2019; pp. 1–6. [Google Scholar]
- Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R. Upgrading the manufacturing sector via applications of industrial internet of things (IIoT). Sens. Int. 2021, 2, 100129. [Google Scholar] [CrossRef]
- Georgios, L.; Kerstin, S.; Theofylaktos, A. Internet of Things in the Context of Industry 4.0: An Overview. Int. J. Entrep. Knowl. 2019. [Google Scholar]
- Cheng, J.; Chen, W.; Tao, F.; Lin, C.L. Industrial IoT in 5G environment towards smart manufacturing. J. Ind. Inf. Integr. 2018, 10, 10–19. [Google Scholar] [CrossRef]
- Gilchrist, A. Industry 4.0: The Industrial Internet of Things; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Kumar, A.S.; Iyer, E. An Industrial IoT in Engineering and Manufacturing Industries—Benefits and Challenges. Int. J. Mech. Prod. Eng. Res. Dev. (IJMPERD) 2019, 9, 151–160. [Google Scholar]
- Christou, I.T.; Kefalakis, N.; Soldatos, J.K.; Despotopoulou, A.M. End-to-end industrial IoT platform for Quality 4.0 applications. Comput. Ind. 2022, 137, 103591. [Google Scholar] [CrossRef]
- Kalunga, J.; Tembo, S.; Phiri, J. Industrial internet of things common concepts, prospects and software requirements. Int. J. Internet Thing 2020, 9, 1–11. [Google Scholar]
- Vitturi, S.; Zunino, C.; Sauter, T. Industrial communication systems and their future challenges: Next-generation Ethernet, IIoT, and 5G. Proc. IEEE 2019, 107, 944–961. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Ameen, S.Y.A. Air pollution monitoring using wireless sensor networks. J. Inf. Technol. Inform. 2021, 1, 20–25. [Google Scholar]
- Madakam, S.; Uchiya, T. Industrial internet of things (IIoT): Principles, processes and protocols. In The Internet of Things in the Industrial Sector; Springer: Berlin/Heidelberg, Germany, 2019; pp. 35–53. [Google Scholar]
- Thapa, C.; Camtepe, S. Precision health data: Requirements, challenges and existing techniques for data security and privacy. Comput. Biol. Med. 2021, 129, 104130. [Google Scholar] [CrossRef]
- Li, X.; Niu, J.; Bhuiyan, M.Z.A.; Wu, F.; Karuppiah, M.; Kumari, S. A robust ECC-based provable secure authentication protocol with privacy preserving for industrial Internet of Things. IEEE Trans. Ind. Inform. 2017, 14, 3599–3609. [Google Scholar] [CrossRef]
- Li, X.; Peng, J.; Niu, J.; Wu, F.; Liao, J.; Choo, K.K.R. A robust and energy efficient authentication protocol for industrial internet of things. IEEE Internet Things J. 2017, 5, 1606–1615. [Google Scholar] [CrossRef]
- Lee, J.; Yu, S.; Kim, M.; Park, Y.; Das, A.K. On the design of secure and efficient three-factor authentication protocol using honey list for wireless sensor networks. IEEE Access 2020, 8, 107046–107062. [Google Scholar] [CrossRef]
- Alladi, T.; Chamola, V. HARCI: A two-way authentication protocol for three entity healthcare IoT networks. IEEE J. Sel. Areas Commun. 2020, 39, 361–369. [Google Scholar] [CrossRef]
- Wu, F.; Li, X.; Xu, L.; Vijayakumar, P.; Kumar, N. A novel three-factor authentication protocol for wireless sensor networks with IoT notion. IEEE Syst. J. 2020, 15, 1120–1129. [Google Scholar] [CrossRef]
- Wang, W.; Qiu, C.; Yin, Z.; Srivastava, G.; Gadekallu, T.R.; Additionallylami, F.; Su, C. Blockchain and PUF-based lightweight authentication protocol for wireless medical sensor networks. IEEE Internet Things J. 2021, 9, 8883–8891. [Google Scholar] [CrossRef]
- Tanveer, M.; Alkhayyat, A.; Kumar, N.; Alharbi, A.G. REAP-IIoT: Resource-Efficient Authentication Protocol for the Industrial Internet of Things. IEEE Internet Things J. 2022. [Google Scholar] [CrossRef]
- Modarres, A.M.A.; Sarbishaei, G. An Improved Lightweight Two-Factor Authentication Protocol for IoT Applications. IEEE Trans. Ind. Inform. 2022. [Google Scholar] [CrossRef]
- Yu, S.; Park, Y. A Robust Authentication Protocol for Wireless Medical Sensor Networks Using Blockchain and Physically Unclonable Functions. IEEE Internet Things J. 2022. [Google Scholar] [CrossRef]
- Esfahani, A.; Mantas, G.; Matischek, R.; Saghezchi, F.B.; Rodriguez, J.; Bicaku, A.; Maksuti, S.; Tauber, M.G.; Schmittner, C.; Bastos, J. A lightweight authentication mechanism for M2M communications in industrial IoT environment. IEEE Internet Things J. 2017, 6, 288–296. [Google Scholar] [CrossRef]
- Chen, C.M.; Xiang, B.; Liu, Y.; Wang, K.H. A secure authentication protocol for internet of vehicles. IEEE Access 2019, 7, 12047–12057. [Google Scholar] [CrossRef]
- Banerjee, S.; Odelu, V.; Das, A.K.; Chattopadhyay, S.; Rodrigues, J.J.; Park, Y. Physically secure lightweight anonymous user authentication protocol for internet of things using physically unclonable functions. IEEE Access 2019, 7, 85627–85644. [Google Scholar] [CrossRef]
- Choudhary, K.; Gaba, G.S.; Butun, I.; Kumar, P. Make-it—A lightweight mutual authentication and key exchange protocol for industrial internet of things. Sensors 2020, 20, 5166. [Google Scholar] [CrossRef]
- Wang, W.; Huang, H.; Zhang, L.; Su, C. Secure and efficient mutual authentication protocol for smart grid under blockchain. Peer-to-Peer Netw. Appl. 2021, 14, 2681–2693. [Google Scholar] [CrossRef]
- Maes, R.; Verbauwhede, I. Physically unclonable functions: A study on the state of the art and future research directions. In Towards Hardware-Intrinsic Security; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–37. [Google Scholar]
- Zheng, Y.; Liu, W.; Gu, C.; Chang, C.H. PUF-based Mutual Authentication and Key Exchange Protocol for Peer-to-Peer IoT Applications. IEEE Trans. Dependable Secur. Comput. 2022. [Google Scholar] [CrossRef]
- Skorobogatov, S.P. Semi-Invasive Attacks: A New Approach to Hardware Security Analysis; University of Cambridge: Cambridge, UK, 2005. [Google Scholar]
- Courbon, F.; Skorobogatov, S.; Woods, C. Reverse engineering flash EEPROM memories using scanning electron microscopy. In Proceedings of the International Conference on Smart Card Research and Advanced Applications, Cannes, France, 7–9 November 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 57–72. [Google Scholar]
- Helfmeier, C.; Nedospasov, D.; Tarnovsky, C.; Krissler, J.S.; Boit, C.; Seifert, J.P. Breaking and entering through the silicon. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, Berlin, Germany, 4–8 November 2013; pp. 733–744. [Google Scholar]
- Ghalaty, N.F.; Yuce, B.; Taha, M.; Schaumont, P. Differential fault intensity analysis. In Proceedings of the 2014 IEEE Workshop on Fault Diagnosis and Tolerance in Cryptography, Busan, Korea, 23 September 2014; pp. 49–58. [Google Scholar]
- Kirsch, A.; Mitzenmacher, M. Less hashing, same performance: Building a better bloom filter. In Proceedings of the European Symposium on Algorithms, Zurich, Switzerland, 11–13 September 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 456–467. [Google Scholar]
- Luo, L.; Guo, D.; Ma, R.T.; Rottenstreich, O.; Luo, X. Optimizing bloom filter: Challenges, solutions, and comparisons. IEEE Commun. Surv. Tutorials 2018, 21, 1912–1949. [Google Scholar] [CrossRef]
- Chazelle, B.; Kilian, J.; Rubinfeld, R.; Tal, A. The bloomier filter: An efficient data structure for static support lookup tables. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 11–14 January 2004; Citeseer: Gaithersburg, MD, USA, 2004; pp. 30–39. [Google Scholar]
- Renard, M. Practical iOS apps hacking. In Proceedings of the First International Symposium on Grey-Hat Hacking, Grenoble, France, October 2012; pp. 14–26. [Google Scholar]
- Khalajmehrabadi, A.; Gatsis, N.; Akopian, D.; Taha, A.F. Real-time rejection and mitigation of time synchronization attacks on the global positioning system. IEEE Trans. Ind. Electron. 2018, 65, 6425–6435. [Google Scholar] [CrossRef]
- Han, M.; Crossley, P. Vulnerability of IEEE 1588 under time synchronization attacks. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5. [Google Scholar]
- Armando, A.; Basin, D.; Boichut, Y.; Chevalier, Y.; Compagna, L.; Cuéllar, J.; Drielsma, P.H.; Héam, P.C.; Kouchnarenko, O.; Mantovani, J.; et al. The AVISPA tool for the automated validation of internet security protocols and applications. In Proceedings of the International Conference on Computer Aided Verification, Edinburgh, UK, 6–10 July 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 281–285. [Google Scholar]
- Kwon, D.K.; Yu, S.J.; Lee, J.Y.; Son, S.H.; Park, Y.H. WSN-SLAP: Secure and lightweight mutual authentication protocol for wireless sensor networks. Sensors 2021, 21, 936. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Tang, Y.; Cheng, X.; Xie, D.; Wang, T.; Zhao, C. Blockchain-based efficient device authentication protocol for medical cyber-physical systems. Secur. Commun. Netw. 2021, 2021, 5580939. [Google Scholar] [CrossRef]
- Raque, F.; Obaidat, M.; Mahmood, K.; Ayub, M.F.; Ferzund, J.; Chaudhry, S.A. An efficient and provably secure certificateless protocol for industrial Internet of Things. IEEE Trans. Ind. Inform. 2022. [Google Scholar] [CrossRef]
- Bhargava, M.; Mai, K. An efficient reliable PUF-based cryptographic key generator in 65nm CMOS. In Proceedings of the 2014 IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 24–28 March 2014; pp. 1–6. [Google Scholar]
- Han, B.; Zhang, D.; Yang, T. Energy consumption analysis and energy management strategy for sensor node. In Proceedings of the 2008 IEEE International Conference on Information and Automation, Hamburg, Germany, 15–18 September 2008; pp. 211–214. [Google Scholar]
Notation | Description |
---|---|
Challenge value for the challenge-response pair | |
Physically unclonable functions | |
Response value of the challenge-response pair | |
Random number | |
H | Hash value |
Hash algorithm | |
Xor operation and join operation | |
M | Communication message |
Symmetric encryption and Symmetric decryption | |
Encrypted and Decrypted values | |
Nonlinear function |
Protocol | ST1 | ST2 | ST3 | ST4 | ST5 | ST6 | ST7 | ST8 | ST9 | ST10 |
---|---|---|---|---|---|---|---|---|---|---|
Alladi 2020 [21] | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 | ✕ | 🗸 | 🗸 | ✕ |
Kwon 2021 [45] | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 | ✕ | 🗸 | 🗸 | 🗸 |
Chen 2021 [46] | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 | ✕ | ✕ | 🗸 | 🗸 | 🗸 |
Raque 2022 [47] | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 | ✕ | 🗸 | 🗸 | 🗸 |
Our | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 |
Protocol | Total Computational Cost of Wireless Sensors | Total Communication Cost of Wireless Sensors | Total Computational Cost of Protocols | Total Communication Cost of Protocols |
---|---|---|---|---|
Alladi 2020 [21] | 9.110 μs | 1408 bits | 36.932 μs | 3584 bits |
Kwon 2021 [45] | 7.995 μs | 1152 bits | 46.360 μs | 2432 bits |
Chen 2021 [46] | 8.271 μs | 1312 bits | 29.289 μs | 2496 bits |
Raque 2022 [47] | 9.252 μs | 1920 bits | 36.363 μs | 3840 bits |
Our | 4.577 μs | 1152 bits | 22.404 μs | 2688 bits |
CPU Processor | Memory | OS | Software Tools | Toolset |
---|---|---|---|---|
Intel(R) Core(TM) i5-5200U CPU @ 2.20 GHz | 8.00 GB | Win10 64-bit | Microsoft Visual C++ | MIRACL cryptographic library and GMP large number library |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, F.; Zhang, L.; Xu, L.; Yang, S.; Lu, Y.; Zhao, D. WSNEAP: An Efficient Authentication Protocol for IIoT-Oriented Wireless Sensor Networks. Sensors 2022, 22, 7413. https://doi.org/10.3390/s22197413
Yi F, Zhang L, Xu L, Yang S, Lu Y, Zhao D. WSNEAP: An Efficient Authentication Protocol for IIoT-Oriented Wireless Sensor Networks. Sensors. 2022; 22(19):7413. https://doi.org/10.3390/s22197413
Chicago/Turabian StyleYi, Fumin, Lei Zhang, Lijuan Xu, Shumian Yang, Yanrong Lu, and Dawei Zhao. 2022. "WSNEAP: An Efficient Authentication Protocol for IIoT-Oriented Wireless Sensor Networks" Sensors 22, no. 19: 7413. https://doi.org/10.3390/s22197413
APA StyleYi, F., Zhang, L., Xu, L., Yang, S., Lu, Y., & Zhao, D. (2022). WSNEAP: An Efficient Authentication Protocol for IIoT-Oriented Wireless Sensor Networks. Sensors, 22(19), 7413. https://doi.org/10.3390/s22197413