Improvement and Performance Evaluation of a Dual-Probe Heat Pulse Distributed Temperature Sensing Method Used for Soil Moisture Estimation
Abstract
:1. Introduction
2. Theory
2.1. DTS Technology
2.2. ICPC Model for the DPHP-DTS Method
2.3. Principle of the Soil Moisture Calculation
3. Improvement of the DPHP-DTS Method
3.1. Fitting Algorithm
3.2. Bulk Density Calibration Method
4. Materials and Method
4.1. Experimental Setup
4.2. Heating Strategies and Measuring Protocol
5. Results and Discussion
5.1. Determination of Cv under Different Heating Strategies
5.2. Bulk Density Calibration Results
5.3. Determination of the Soil Moisture
5.4. Application in Soil Evaporation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Cv | soil volumetric heat capacity (J m−3 K−1) |
Cv0 | volumetric heat capacity (J m−3 K−1) of the probe |
cw | water specific heat capacity (J kg−1 K−1) |
cs | soil solid specific heat capacity (J kg−1 K−1) |
Cu | uniformity coefficient |
Cc | curvature coefficient |
d 50 | mean grain size (mm) |
∆E | difference between the molecular energy states driving Raman scattering (J) |
k | Boltzmann constant (J K−1) |
K0 | second kind of 0-order modified Bessel function |
K1 | second kind of 1-order modified Bessel function |
p | Laplace transformation variable |
q | heating strength (W m−1) per unit length |
R(z) | ratio between Stokes and anti-Stokes intensities |
r | distance (m) between the heating probe and the temperature probe |
r0 | radius (m) of the probe |
T | temperature (K) |
T0 | initial temperature (K) |
ΔTmax | maximum temperature (K) rise value |
t | time (s) |
z | distance (m) along the cable |
∆α | differential attenuation of the backscattered Stokes and anti-Stokes intensities |
λ | soil thermal conductivity (W m−1 K−1) |
θv | volumetric water content (m3 m−3) |
ρw | water density (g cm−3) |
ρb | soil bulk density (g cm−3) |
ωG | mass water content (kg kg−1) |
References
- Sheng, W.; Zhou, R.; Sadeghi, M.; Babaeian, E.; Robinson, D.A.; Tuller, M.; Jones, S.B. A TDR Array Probe for Monitoring Near-Surface Soil Moisture Distribution. Vadose Zone J. 2017, 16, 1–8. [Google Scholar] [CrossRef]
- Huisman, J.A.; Hubbard, S.S.; Redman, J.D.; Annan, A.P. Measuring Soil Water Content with Ground Penetrating Radar: A Review. Vadose Zone J. 2003, 2, 476–491. [Google Scholar] [CrossRef]
- Dias, P.C.; Roque, W.; Ferreira, E.C.; Siqueira Dias, J.A. A High Sensitivity Single-Probe Heat Pulse Soil Moisture Sensor Based on a Single Npn Junction Transistor. Comput. Electron. Agric. 2013, 96, 139–147. [Google Scholar] [CrossRef]
- Walker, J.P.; Willgoose, G.R.; Kalma, J.D. In Situ Measurement of Soil Moisture: A Comparison of Techniques. J. Hydrol. 2004, 293, 85–99. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone J. 2017, 16. [Google Scholar] [CrossRef] [Green Version]
- Sayde, C.; Gregory, C.; Gil-Rodriguez, M.; Tufillaro, N.; Tyler, S.; van de Giesen, N.; English, M.; Cuenca, R.; Selker, J.S. Feasibility of Soil Moisture Monitoring with Heated Fiber Optics. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Cao, D.; Shi, B.; Loheide, S.P.; Gong, X.; Zhu, H.H.; Wei, G.; Yang, L. Investigation of the Influence of Soil Moisture on Thermal Response Tests Using Active Distributed Temperature Sensing (A–DTS) Technology. Energy Build. 2018, 173, 239–251. [Google Scholar] [CrossRef]
- Gil-Rodríguez, M.; Rodríguez-Sinobas, L.; Benítez-Buelga, J.; Sánchez-Calvo, R. Application of Active Heat Pulse Method with Fiber Optic Temperature Sensing for Estimation of Wetting Bulbs and Water Distribution in Drip Emitters. Agric. Water Manag. 2013, 120, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Striegl, A.M.; Loheide, S.P. Heated Distributed Temperature Sensing for Field Scale Soil Moisture Monitoring. Ground Water 2012, 50, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Palaparthy, V.S.; Mondal, S.; Singh, D.N.; Baghini, M.S.; Ananthasuresh, G.K. Effect of Spatial Variations and Desiccation Cracks on the DPHP and MPHP Sensors. Sens. Actuators A-Phys. 2018, 279, 638–648. [Google Scholar] [CrossRef]
- Liu, J.; Shi, B.; Sun, M.Y.; Zhang, C.C.; Guo, J.Y. In-Situ Soil Dry Density Estimation Using Actively Heated Fiber-Optic FBG Method. Meas. J. Int. Meas. Confed. 2021, 185, 110037. [Google Scholar] [CrossRef]
- Sun, M.Y.; Shi, B.; Zhang, D.; Liu, J.; Guo, J.Y.; Wei, G.Q.; Cheng, W. Study on Calibration Model of Soil Water Content Based on Actively Heated Fiber-Optic FBG Method in the in-Situ Test. Meas. J. Int. Meas. Confed. 2020, 165, 108176. [Google Scholar] [CrossRef]
- Lu, Y.; Horton, R.; Ren, T. Simultaneous Determination of Soil Bulk Density and Water Content: A Heat Pulse-Based Method. Eur. J. Soil Sci. 2018, 69, 947–952. [Google Scholar] [CrossRef]
- Benítez-Buelga, J.; Sayde, C.; Rodríguez-Sinobas, L.; Selker, J.S. Heated Fiber Optic Distributed Temperature Sensing: A Dual-Probe Heat-Pulse Approach; Heated Fiber Optic Distributed Temperature Sensing: A Dual-Probe Heat-Pulse Approach. Vadose Zone J. 2014, 13, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bristow, K.L.; Kluitenberg, G.J.; Horton, R. Measurement of Soil Thermal Properties with a Dual-Probe Heat-Pulse Technique. Soil Sci. Soc. Am. J. 1994, 58, 1288–1294. [Google Scholar] [CrossRef]
- Kluitenberg, G.J.; Ham, J.M.; Bristow, K.L. Error Analysis of the Heat Pulse Method for Measuring Soil Volumetric Heat Capacity. Soil Sci. Soc. Am. J. 1993, 57, 1444–1451. [Google Scholar] [CrossRef]
- Knight, J.H.; Kluitenberg, G.J. Simplified Computational Approach for Dual-Probe Heat-Pulse Method. Soil Sci. Soc. Am. J. 2004, 68, 447–449. [Google Scholar] [CrossRef]
- Shehata, M.; Heitman, J.; Ishak, J.; Sayde, C. High-Resolution Measurement of Soil Thermal Properties and Moisture Content Using a Novel Heated Fiber Optics Approach. Water Resour. Res. 2020, 56, e2019WR025204. [Google Scholar] [CrossRef]
- Sun, M.Y.; Shi, B.; Zhang, C.C.; Zheng, X.; Guo, J.Y.; Wang, Y.Q.; He, M.N.; Liu, J. Quasi-Distributed Fiber-Optic in-Situ Monitoring Technology for Large-Scale Measurement of Soil Water Content and Its Application. Eng. Geol. 2021, 294, 106373. [Google Scholar] [CrossRef]
- Palaparthy, V.S.; Singh, D.N.; Baghini, M.S. Compensation of Temperature Effects for In-Situ Soil Moisture Measurement by DPHP Sensors. Comput. Electron. Agric. 2017, 141, 73–80. [Google Scholar] [CrossRef]
- Liu, G.; Wen, M.; Chang, X.; Ren, T.; Horton, R. A Self-Calibrated Dual Probe Heat Pulse Sensor for In Situ Calibrating the Probe Spacing. Soil Sci. Soc. Am. J. 2013, 77, 417–421. [Google Scholar] [CrossRef]
- Hausner, M.B.; Suárez, F.; Glander, K.E.; van de Giesen, N.; Selker, J.S.; Tyler, S.W. Calibrating Single-Ended Fiber-Optic Raman Spectra Distributed Temperature Sensing Data. Sensors 2011, 11, 10859–10879. [Google Scholar] [CrossRef]
- Farahani, M.A.; Gogolla, T. Spontaneous Raman Scattering in Optical Fibers with Modulated Probe Light for Distributed Temperature Raman Remote Sensing. J. Light. Technol. 1999, 17, 1379–1391. [Google Scholar] [CrossRef]
- Yilmaz, G.; Karlik, S.E. A Distributed Optical Fiber Sensor for Temperature Detection in Power Cables. Sens. Actuators A Phys. 2006, 125, 148–155. [Google Scholar] [CrossRef]
- Suárez, F.; Aravena, J.E.; Hausner, M.B.; Childress, A.E.; Tyler, S.W. Assessment of a Vertical High-Resolution Distributed-Temperature-Sensing System in a Shallow Thermohaline Environment. Hydrol. Earth Syst. Sci. 2011, 15, 1081–1093. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.H.; Kluitenberg, G.J.; Kamai, T.; Hopmans, J.W. Semianalytical Solution for Dual-Probe Heat-Pulse Applications That Accounts for Probe Radius and Heat Capacity. Vadose Zone J. 2012, 11, vzj2011.0112. [Google Scholar] [CrossRef] [Green Version]
- de Vries, D.A. A Nonstationary Method for Determining Thermal Conductivity of Soil In Situ. Soil Sci. 1952, 73, 83–90. [Google Scholar] [CrossRef]
- Valsa, J.; Brancik, L. Approximate Formulae for Numerical Inversion of Laplace Transforms. Int. J. Numer. Model.-Electron. Netw. Devices Fields 1998, 11, 153–166. [Google Scholar] [CrossRef]
- Dong, J.; Agliata, R.; Steele-Dunne, S.; Hoes, O.; Bogaard, T.; Greco, R.; van de Giesen, N. The Impacts of Heating Strategy on Soil Moisture Estimation Using Actively Heated Fiber Optics. Sensors 2017, 17, 2102. [Google Scholar] [CrossRef] [Green Version]
- Basinger, J.M.; Kluitenberg, G.J.; Ham, J.M.; Frank, J.M.; Barnes, P.L.; Kirkham, M.B. Laboratory Evaluation of the Dual-Probe Heat-Pulse Method for Measuring Soil Water Content. Vadose Zone J. 2003, 2, 389–399. [Google Scholar] [CrossRef]
- Ciocca, F.; Lunati, I.; van de Giesen, N.; Parlange, M.B. Heated Optical Fiber for Distributed Soil-Moisture Measurements: A Lysimeter Experiment. Vadose Zone J. 2012, 11, vzj2011.0199. [Google Scholar] [CrossRef] [Green Version]
- An, N.; Tang, C.S.; Xu, S.K.; Gong, X.P.; Shi, B.; Inyang, H.I. Effects of Soil Characteristics on Moisture Evaporation. Eng. Geol. 2018, 239, 126–135. [Google Scholar] [CrossRef]
Sand | Loess | |
---|---|---|
ρb (g cm−3) | 1.474 | 1.600 |
ωG (kg kg−1) | 9.27% | 19.77% |
cS (J kg−1 K−1) | 680 | 750 |
λ (W m−1 K−1) | 1.163 | 1.244 |
Cu | 1.455 | 4.310 |
Cc | 0.960 | 0.690 |
d50 (mm) | 0.750 | 0.019 |
Strength | 20 W m−1 | 30 W m−1 | 40 W m−1 | |
---|---|---|---|---|
Duration | ||||
50 s | L5 | M5 | H5 | |
70 s | L7 | M7 | H7 | |
120 s | L12 | M12 | H12 |
Height (cm) | Loess | Sand | ||
---|---|---|---|---|
ρb (g cm−3) | R2 | ρb (g cm−3) | R2 | |
6.5 | 1.602 | 0.9987 | 1.421 | 0.9723 |
12.5 | 1.626 | 0.9988 | 1.442 | 0.9972 |
20 | 1.641 | 0.9498 | 1.419 | 0.9965 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, J.-C.; Shi, B.; Liu, J.; Sun, M.-Y.; Fang, K.; Yao, J.; Gu, K.; Zhang, W.; Zhang, J.-W. Improvement and Performance Evaluation of a Dual-Probe Heat Pulse Distributed Temperature Sensing Method Used for Soil Moisture Estimation. Sensors 2022, 22, 7592. https://doi.org/10.3390/s22197592
Yao J-C, Shi B, Liu J, Sun M-Y, Fang K, Yao J, Gu K, Zhang W, Zhang J-W. Improvement and Performance Evaluation of a Dual-Probe Heat Pulse Distributed Temperature Sensing Method Used for Soil Moisture Estimation. Sensors. 2022; 22(19):7592. https://doi.org/10.3390/s22197592
Chicago/Turabian StyleYao, Jun-Cheng, Bin Shi, Jie Liu, Meng-Ya Sun, Ke Fang, Jian Yao, Kai Gu, Wei Zhang, and Ji-Wen Zhang. 2022. "Improvement and Performance Evaluation of a Dual-Probe Heat Pulse Distributed Temperature Sensing Method Used for Soil Moisture Estimation" Sensors 22, no. 19: 7592. https://doi.org/10.3390/s22197592
APA StyleYao, J. -C., Shi, B., Liu, J., Sun, M. -Y., Fang, K., Yao, J., Gu, K., Zhang, W., & Zhang, J. -W. (2022). Improvement and Performance Evaluation of a Dual-Probe Heat Pulse Distributed Temperature Sensing Method Used for Soil Moisture Estimation. Sensors, 22(19), 7592. https://doi.org/10.3390/s22197592