Development of High-Temperature Wire-Grid Thin Film Strain Gauges
Abstract
:1. Introduction
2. Simulation Analysis and Structural Design
2.1. Material Selection
2.2. Determination of the Simulation Boundary Conditions
- Heat conduction equation:
- Heat flow conduction equation:
- Thermal strain equation:
- Equation for calculating the amount of change in resistance:
2.3. Simulation of the Transfer Hysteresis Effect
2.4. Equal-Strength Beam Thermo-Mechanical Coupling Simulation of PtRh6 TFSGs
2.5. Equal-Strength Beam Finite Element Analysis of the GFs of PtRh6 TFSGs
2.6. Equal-Strength Beam PtRh6 High-Temperature TFSGs TCR Finite Element Analysis
3. Experiment
3.1. Sample Preparation Process
3.2. Insulation Film Preparation
3.3. High-Temperature Insulation Test
3.4. Effect of the Annealing Temperature on the Insulation Properties of the Four-Layer Composite Insulating Film
3.5. Calibration of the Gauge Factor
3.6. Calibration of TCR before and after Heat Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.F.; Lv, J.F. Performance study of technology of combustion inside turbine using in fanjet. Acta Aerodyn. Sin. 2010, 28, 358–363. [Google Scholar]
- Lei, J.F.; Will, H.A. Thin-film thermocouples and strain-gauge technologies for engine applications. Sens. Actuators A Phys. 1998, 65, 187–193. [Google Scholar] [CrossRef]
- Liu, H.B.; Lin, N.; Pan, S.-S.; Miao, J.; Norford, L.K. High sensitivity, miniature, full 2-D anemometer based on MEMS hot-film sensors. IEEE Sens. J. 2012, 13, 1914–1920. [Google Scholar] [CrossRef]
- Chung, G.S. Characteristics of tantalum nitride thin film strain gauges for harsh environments. Sens. Actuators A Phys. 2007, 135, 355–359. [Google Scholar] [CrossRef]
- Missinne, J.; Teigell Benéitez, N.; Mattelin, M.A.; Lamberti, A.; Luyckx, G.; Van Paepegem, W.; Van Steenberge, G. Bragg-grating-based photonic strain and temperature sensor foils realized using imprinting and operating at very near infrared wavelengths. Sensors 2018, 18, 2717. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Jiang, S.; Zhao, X.; Jiang, H.; Zhang, W. YSZ/Al2O3 multilayered film as insulating layer for high temperature thin film strain gauge prepared on Ni-based superalloy. Sens. Actuators A Phys. 2018, 279, 272–277. [Google Scholar] [CrossRef]
- Ottermann, R.; Klaas, D.; Dencker, F.; Wurz, M.C.; Hoheisel, D.; Rottengatter, P.; Kruspe, T. Direct Deposition of Thin-Film Strain Gauges with a New Coating System for Elevated Temperatures. In Proceedings of the 2020 IEEE SENSORS, Rotterdam, The Netherlands, 25–28 October 2020; pp. 1–4. [Google Scholar]
- Klaas, D.; Ottermann, R.; Dencker, F.; Wurz, M.C. Development, Characterisation and High-Temperature Suitability of Thin-Film Strain Gauges Directly Deposited with a New Sputter Coating System. Sensors 2020, 20, 3294. [Google Scholar] [CrossRef]
- Liu, H.; Mao, X.; Yang, Z.; Cui, J.; Jiang, S.; Zhang, W. High temperature static and dynamic strain response of PdCr thin film strain gauge prepared on Ni-based superalloy. Sens. Actuators A Phys. 2019, 298, 111571. [Google Scholar] [CrossRef]
- Wang, C.M.; Hsieh, J.H.; Li, C. Electrical and piezoresistive properties of TaN–Cu nanocomposite thin films. Thin Solid Films 2004, 469, 455–459. [Google Scholar] [CrossRef]
- Zarfl, C.; Schmid, P.; Balogh, G.; Schmid, U. TiAlN thin films as high temperature strain gauges. Procedia Eng. 2014, 87, 136–139. [Google Scholar] [CrossRef]
- Schmid, P.; Triendl, F.; Zarfl, C.; Schwarz, S.; Artner, W.; Schneider, M.; Schmid, U. Electro-mechanical properties of multilayered aluminum nitride and platinum thin films at high temperatures. Sens. Actuators A Phys. 2019, 293, 128–135. [Google Scholar] [CrossRef]
- Schmid, P.; Triendl, F.; Zarfl, C.; Schwarz, S.; Artner, W.; Schneider, M.; Schmid, U. Influence of the AlN/Pt-ratio on the electro-mechanical properties of multilayered AlN/Pt thin film strain gauges at high temperatures. Sens. Actuators A Phys. 2020, 302, 111805. [Google Scholar] [CrossRef]
- Gregory, O.J.; Luo, Q. A self-compensated ceramic strain gauge for use at elevated temperatures. Sens. Actuators A Phys. 2001, 88, 234–240. [Google Scholar] [CrossRef]
- Gregory, O.J.; Chen, X.M.; Crisman, E.E. Strain and temperature effects in indium-tin-oxide sensors. Thin Solid Films 2010, 518, 5622–5625. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, J.; Zhou, H.; Li, J.; Yang, M.; Cao, S.; Xu, J. Effect of nitrogen partial pressure on the TCR of magnetron sputtered indium tin oxide thin films at high temperatures. Ceram. Int. 2022, 48, 12924–12931. [Google Scholar] [CrossRef]
- Kumar, S.S.; Pant, B.D. Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: A focused review. Microsyst. Technol. 2014, 20, 1213–1247. [Google Scholar] [CrossRef]
- Cui, Z.; Li, X.; Pan, X.; Chen, G.; Li, Y.; Lin, J.; Wu, C.; Liu, X.; Yang, T.; Hai, Z.; et al. Polymer-derived ceramic thin-film temperature sensor. Sens. Actuators A Phys. 2021, 332, 113038. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, X.; Zhao, R.; Chen, Y.; Li, N.; An, L. Giant piezoresistivity in polymer-derived amorphous SiAlCO ceramics. J. Mater. Sci. 2016, 51, 5646–5650. [Google Scholar] [CrossRef]
- Shao, G.; Jiang, J.; Jiang, M.; Su, J.; Liu, W.; Wang, H.; Xu, H.; Lit, H.; Zhang, R. Polymer-derived SiBCN ceramic pressure sensor with excellent sensing performance. J. Adv. Ceram. 2020, 9, 374–379. [Google Scholar] [CrossRef]
- Wu, C.; Pan, X.; Lin, F.; Cui, Z.; Li, X.; Chen, G.; Liu, X.; He, Y.; He, G.; Hai, Z.; et al. High-temperature electrical properties of polymer-derived ceramic SiBCN thin films fabricated by direct writing. Ceram. Int. 2022, 48, 15293–15302. [Google Scholar] [CrossRef]
- Kayser, P.; Godefroy, J.C.; Leca, L. High-temperature thin-film strain gauges. Sens. Actuators A Phys. 1993, 37, 328–332. [Google Scholar] [CrossRef]
- Shamala, K.S.; Murthy, L.C.S.; Rao, K.N. Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method. Mater. Sci. Eng. B 2004, 106, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Segda, B.G.; Jacquet, M.; Besse, J.P. Elaboration, characterization and dielectric properties study of amorphous alumina thin films deposited by r.f. magnetron sputtering. Vacuum 2001, 62, 27–38. [Google Scholar] [CrossRef]
- Musil, J.; Blažek, J.; Zeman, P.; Prokšová, Š.; Šašek, M.; Čerstvý, R. Thermal stability of alumina thin films containing γ-Al2O3 phase prepared by reactive magnetron sputtering. Appl. Surf. Sci. 2010, 257, 1058–1062. [Google Scholar] [CrossRef]
- Gilmore, C.M.; Quinn, C.; Skelton, E.F.; Gossett, C.R.; Qadri, S.B. Stabilized zirconia–alumina thin films. J. Vac. Sci. Technol. A 1986, 4, 2598–2600. [Google Scholar] [CrossRef]
- Afrasiabi, A.; Saremi, M.; Kobayashi, A. A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ+Al2O3 and YSZ/Al2O3. Mater. Sci. Eng. A 2008, 478, 264–269. [Google Scholar] [CrossRef]
- Andritschky, M.; Cunha, I.; Alpuim, P. Thermal stability of zirconia/alumina thin coatings produced by magnetron sputtering. Surf. Coat. Technol. 1997, 94, 144–148. [Google Scholar] [CrossRef]
- Khairi, N.M.; Rizam, M.S.; Naimah, M.I.; Ooritawati, M.T.; Husna, Z.A. Diameter Stem Change Detection Sensor Evaluation Using Different Size of Strain Gauge on Dendrobium Stem. Procedia Eng. 2012, 41, 1421–1425. [Google Scholar] [CrossRef]
- Zuo, J.; Zhang, J.F. Influence of Strain Gauge Bonding-Process on Measurement Data Accuracy of Composite Material Structure. Adv. Mater. Res. 2014, 910, 132–136. [Google Scholar] [CrossRef]
- Chen, S.; Lu, J.; Xie, M.; Xia, L.; Pan, Y.; Hu, J. First-Principle Investigation on Mechanical Performances of Platinum-Rhodium Alloys. Chin. J. Rare Met. 2015, 39, 276–282. [Google Scholar]
- Mo, G.; Cui, Y.; Yin, J.; Gao, P. Influence of ZnO Film Deposition Parameters on Piezoelectric Properties and Film-to-Substrate Adhesion on a GH4169 Superalloy Steel Substrate. Micromachines 2022, 13, 639. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Pan, X.; Lin, F.; Cui, Z.; He, Y.; Chen, G.; Zeng, Y.; Liu, X.; Chen, Q.; Hai, Z.; et al. TiB2/SiCN Thin-film Strain Gauges Fabricated By Direct Writing for High-temperature Application. IEEE Sens. J. 2022, 22, 11517–11525. [Google Scholar] [CrossRef]
Film Thickness | Longitudinal Length | Longitudinal Width | Crossbar Length | Crossbar Width | Electrode Length | Electrode Width |
---|---|---|---|---|---|---|
600 nm | 3 mm | 0.1 mm | 0.6 mm | 0.5 mm | 2 mm | 2 mm |
800 nm | 4 mm | 0.1 mm | 0.6 mm | 0.5 mm | 2 mm | 2 mm |
1000 nm | 5 mm | 0.1 mm | 0.6 mm | 0.5 mm | 2 mm | 2 mm |
1200 nm | 6 mm | 0.1 mm | 0.6 mm | 0.5 mm | 2 mm | 2 mm |
Functional Layer | Materials | Young’s Modulus (GPa) | Poisson’s Ratio | Shear Modulus (GPa) |
---|---|---|---|---|
Protective layer | Al2O3 | 152 | 0.2 | 83.33 |
Sensitive layer | PtRh6 | 169 | 0.38 | 61 |
Insulation layer | Al2O3 | 152 | 0.2 | 83.33 |
ZrO2 | 220 | 0.3 | 119 | |
Alloy substrates | Inconel718 | 227.79 | 0.3241 | 137 |
Film Thickness Temperature | 200 °C Loading | 200 °C Unloading | 600 °C Loading | 600 °C Unloading | 1000 °C Loading | 1000 °C Unloading |
---|---|---|---|---|---|---|
Substrate surface strain | 3.314 × 10−4 | 1.477 × 10−7 | 3.298 × 10−4 | 1.477 × 10−7 | 3.305 × 10−4 | 1.477 × 10−7 |
600 nm | 3.218 × 10−4 | 1.474 × 10−7 | 3.222 × 10−4 | 1.525 × 10−7 | 3.222 × 10−4 | 1.794 × 10−7 |
800 nm | 3.231 × 10−4 | 1.479 × 10−7 | 3.232 × 10−4 | 1.532 × 10−7 | 3.232 × 10−4 | 1.477 × 10−7 |
1000 nm | 3.202 × 10−4 | 1.473 × 10−7 | 3.205 × 10−4 | 1.531 × 10−7 | 3.205 × 10−4 | 1.794 × 10−7 |
1200 nm | 3.199 × 10−4 | 1.474 × 10−7 | 3.199 × 10−4 | 1.531 × 10−7 | 3.199 × 10−4 | 1.795 × 10−7 |
Functional Area | Length (mm) | Width (mm) | Film Thickness (nm) | Resistance (Ω) | Quantity | Total Resistance (Ω) |
---|---|---|---|---|---|---|
Longitudinal bar | 4 | 0.1 | 800 | 8.3 | 12 | 91.3 |
Crossbar | 0.6 | 0.5 | 800 | 5.81 | 11 | 11.62 |
connecting longitudinal bar | 6.6 | 0.2 | 800 | 0.249 | 2 | 2.49 |
Connecting the Crossbar | 0.6 | 0.6 | 800 | 0.415 | 3 | 0.83 |
Electrode area | 2 | 2 | 800 | 0.415 | 2 | 0.83 |
Temperature (°C) Materials | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
---|---|---|---|---|---|---|---|---|---|---|
Inconel718 | 14.7 | 14.7 | 14.8 | 14.8 | 14.9 | 15.2 | 15.7 | 15.8 | 15.9 | 15.9 |
PtRh6 | 9.0 | 9.0 | 9.0 | 9.0 | 9.015 | 9.17 | 9.22 | 9.23 | 9.23 | 9.23 |
Materials | Target Materials | Ar:O (sccm) | Sputtering Air Pressure (Pa) | Background Vacuum (Pa) | Sputtering Power (W) |
---|---|---|---|---|---|
Al2O3 | Al | 20:8 | 0.6 | 1 × 10−3 | 400 |
ZrO2 | Zr | 20:8 | 0.6 | 1 × 10−3 | 400 |
Sensitive Layer Materials | Substrate | Fabrication Method | Maximum Use Temperature (°C) | Gauge Factor | TCR (ppm/°C) | Reference |
---|---|---|---|---|---|---|
Ni80Cr20 | DIN 50,125 Form H | Sputtering | 200 | 2.05 | −51.5 | [7,8] |
PdCr | K456 | Sputtering | 800 | 1.78–2.13 | [9] | |
TiAlN | sapphire | Sputtering | 350 | 2.5 | [11] | |
Pt | 96% Al2O3 ceramic | Sputtering | 850 | 1.9–2.5 | [12] | |
TiB2/SiCN | Ni-based superalloy | DIW | 700 | 7.12 | [33] | |
PtRh6 | Inconel718 | Sputtering | 1000 | 1.09 | 88.52 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Li, X.; Zhang, T.; Ding, W.; Yin, J. Development of High-Temperature Wire-Grid Thin Film Strain Gauges. Sensors 2022, 22, 7595. https://doi.org/10.3390/s22197595
Cui Y, Li X, Zhang T, Ding W, Yin J. Development of High-Temperature Wire-Grid Thin Film Strain Gauges. Sensors. 2022; 22(19):7595. https://doi.org/10.3390/s22197595
Chicago/Turabian StyleCui, Yunxian, Xin Li, Tenglun Zhang, Wanyu Ding, and Junwei Yin. 2022. "Development of High-Temperature Wire-Grid Thin Film Strain Gauges" Sensors 22, no. 19: 7595. https://doi.org/10.3390/s22197595
APA StyleCui, Y., Li, X., Zhang, T., Ding, W., & Yin, J. (2022). Development of High-Temperature Wire-Grid Thin Film Strain Gauges. Sensors, 22(19), 7595. https://doi.org/10.3390/s22197595