Noncontact Sleeping Heartrate Monitoring Method Using Continuous-Wave Doppler Radar Based on the Difference Quadratic Sum Demodulation and Search Algorithm
Abstract
:1. Introduction
2. Methods
2.1. Demodulation Method
2.2. Heart Rate Feature Extraction and Search Algorithm
Algorithm 1. Heartrate nearest neighbor search. |
Input: , , P; Output: H |
initial heart rate array : . |
calculate the Layer vector, and find the base layer value |
while H is empty do |
empty positions are replaced with values from or according to and min() |
if has no zero value |
calculate the layer vector. |
if the number of layer 3 |
H = , break |
else set the unqualified value to zero and continue the loop. |
end while |
3. Radar System and Experiments
3.1. Simulation Experiment of Motion-Controllable Cardboard
3.2. Unconstrained Sleep HR Monitoring
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HR | Heart rate |
ECG | Electrocardiogram |
RR | Respiratory rate |
RBMs | Random body movements |
CSD | Complex signal demodulation |
DACM | Differentiate and cross-multiply algorithm |
DQS | difference quadratic sum |
NNS | Nearest neighbor search |
IF | Intermediate frequency |
I | In-phase |
Q | Quadrature |
VCO | Voltage-controlled oscillator |
References
- Dong, S.Q.; Zhang, Y.; Ma, C.; Zhu, C.K.; Gu, Z.T.; Lv, Q.Y.; Zhang, B.; Li, C.Z.; Ran, L.X. Doppler Cardiogram: A Remote Detection of Human Heart Activities. IEEE Trans. Microw. Theory Tech. 2020, 68, 1132–1141. [Google Scholar] [CrossRef]
- Zhang, T.; Sarrazin, J.; Valerio, G.; Istrate, D. Estimation of Human Body Vital Signs Based on 60 GHz Doppler Radar Using a Bound-Constrained Optimization Algorithm. Sensors 2018, 18, 2254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Lin, J.; Xiao, Y. Robust Overnight Monitoring of Human Vital Signs by a Non-contact Respiration and Heartbeat Detector. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 2235–2238. [Google Scholar]
- Tran, V.P.; Al-Jumaily, A.A.; Islam, S.M.S. Doppler Radar-Based Non-Contact Health Monitoring for Obstructive Sleep Apnea Diagnosis: A Comprehensive Review. Big Data Cogn. Comput. 2019, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Chuma, E.L.; Roger, L.L.B.; Oliveira, G.G.d.; Iano, Y.; Pajuelo, D. Internet of Things (IoT) Privacy–Protected, Fall-Detection System for the Elderly Using the Radar Sensors and Deep Learning. In Proceedings of the 2020 IEEE International Smart Cities Conference (ISC2), Piscataway, NJ, USA, 28 September–1 October 2020; pp. 1–4. [Google Scholar]
- Wang, F.; Skubic, M.; Rantz, M.; Cuddihy, P.E. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment. IEEE Trans. Biomed. Eng. 2014, 61, 2434–2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuma, E.L.; Iano, Y. A Movement Detection System Using Continuous-Wave Doppler Radar Sensor and Convolutional Neural Network to Detect Cough and Other Gestures. IEEE Sens. J. 2021, 21, 2921–2928. [Google Scholar] [CrossRef]
- Pour Ebrahim, M.; Sarvi, M.; Yuce, M.R. A Doppler Radar System for Sensing Physiological Parameters in Walking and Standing Positions. Sensors 2017, 17, 485. [Google Scholar] [CrossRef] [Green Version]
- Zakrzewski, M.; Vehkaoja, A.; Joutsen, A.S.; Palovuori, K.T.; Vanhala, J.J. Noncontact Respiration Monitoring During Sleep With Microwave Doppler Radar. IEEE Sens. J. 2015, 15, 5683–5693. [Google Scholar] [CrossRef]
- Tu, J.; Hwang, T.; Lin, J. Respiration Rate Measurement Under 1-D Body Motion Using Single Continuous-Wave Doppler Radar Vital Sign Detection System. IEEE Trans. Microw. Theory Tech. 2016, 64, 1937–1946. [Google Scholar] [CrossRef]
- Baboli, M.; Singh, A.; Soll, B.; Boric-Lubecke, O.; Lubecke, V.M. Wireless Sleep Apnea Detection Using Continuous Wave Quadrature Doppler Radar. IEEE Sens. J. 2020, 20, 538–545. [Google Scholar] [CrossRef]
- Mercuri, M.; Liu, Y.H.; Lorato, I.; Torfs, T.; Wieringa, F.; Bourdoux, A.; Van Hoof, C. A Direct Phase-Tracking Doppler Radar Using Wavelet Independent Component Analysis for Non-Contact Respiratory and Heart Rate Monitoring. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 632–643. [Google Scholar] [CrossRef]
- Li, C.Z.; Xiao, Y.M.; Lin, J.S. Experiment and spectral analysis of a low-power Ka-band heartbeat detector measuring from four sides of a human body. IEEE Trans. Microw. Theory Tech. 2006, 54, 4464–4471. [Google Scholar] [CrossRef]
- Hosseini, S.; Amindavar, H. A New Ka-Band Doppler Radar in Robust and Precise Cardiopulmonary Remote Sensing. IEEE Trans. Instrum. Meas. 2017, 66, 3012–3022. [Google Scholar] [CrossRef]
- Wang, G.C.; Gu, C.Z.; Inoue, T.; Li, C.Z. A Hybrid FMCW-Interferometry Radar for Indoor Precise Positioning and Versatile Life Activity Monitoring. IEEE Trans. Microw. Theory Tech. 2014, 62, 2812–2822. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, X.; Chen, L.; Huangfu, J.T.; Li, C.Z.; Ran, L.X. Noncontact Distance and Amplitude-Independent Vibration Measurement Based on an Extended DACM Algorithm. IEEE Trans. Instrum. Meas. 2014, 63, 145–153. [Google Scholar] [CrossRef]
- Lv, Q.Y.; Ye, D.X.; Qiao, S.; Salamin, Y.; Huangfu, J.T.; Li, C.Z.; Ran, L.X. High Dynamic-Range Motion Imaging Based on Linearized Doppler Radar Sensor. IEEE Trans. Microw. Theory Tech. 2014, 62, 1837–1846. [Google Scholar] [CrossRef]
- Chernov, N.; Lesort, C. Least squares fitting of circles. J. Math. Imaging Vis. 2005, 23, 239–252. [Google Scholar] [CrossRef]
- Lv, Q.Y.; Min, L.T.; Cao, C.Q.; Zhou, S.G.; Zhou, D.Y.; Zhu, C.K.; Li, Y.; Zhu, Z.B.; Li, X.J.; Ran, L.X. Time-Domain Doppler Biomotion Detections Immune to Unavoidable DC Offsets. IEEE Trans. Instrum. Meas. 2021, 70, 10. [Google Scholar] [CrossRef]
- Lin, F.; Zhuang, Y.; Song, C.; Wang, A.S.; Li, Y.R.; Gu, C.Z.; Li, C.Z.; Xu, W.Y. SleepSense: A Noncontact and Cost-Effective Sleep Monitoring System. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 189–202. [Google Scholar] [CrossRef]
- Hong, H.; Zhang, L.; Gu, C.; Li, Y.S.; Zhou, G.X.; Zhu, X.H. Noncontact Sleep Stage Estimation Using a CW Doppler Radar. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 260–270. [Google Scholar] [CrossRef]
- Yang, Z.K.; Shi, H.P.; Zhao, S.; Huang, X.D. Vital Sign Detection during Large-Scale and Fast Body Movements Based on an Adaptive Noise Cancellation Algorithm Using a Single Doppler Radar Sensor. Sensors 2020, 20, 4183. [Google Scholar] [CrossRef]
- Kebe, M.; Gadhafi, R.; Mohammad, B.; Sanduleanu, M.; Saleh, H.; Al-Qutayri, M. Human Vital Signs Detection Methods and Potential Using Radars: A Review. Sensors 2020, 20, 1454. [Google Scholar] [CrossRef] [Green Version]
- Kondo, T.; Uhlig, T.; Pemberton, P.; Sly, P.D. Laser monitoring of chest wall displacement. Eur. Resp. J. 1997, 10, 1865–1869. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Ramachandran, G. Reconstruction of sequential cardiac in-plane displacement patterns on the chest wall by laser speckle interferometry. IEEE Trans. Biomed. Eng. 1991, 38, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Kiriazi, J.E.; Islam, S.M.M.; Boric-Lubecke, O.; Lubecke, V.M. Sleep Posture Recognition With a Dual-Frequency Cardiopulmonary Doppler Radar. IEEE Access 2021, 9, 36181–36194. [Google Scholar] [CrossRef]
- Lv, Q.Y.; Chen, L.; An, K.; Wang, J.; Li, H.; Ye, D.X.; Huangfu, J.T.; Li, C.Z.; Ran, L.X. Doppler Vital Signs Detection in the Presence of Large-Scale Random Body Movements. IEEE Trans. Microw. Theory Tech. 2018, 66, 4261–4270. [Google Scholar] [CrossRef]
- Rong, Y.; Dutta, A.; Chiriyath, A.; Bliss, D.W. Motion-Tolerant Non-Contact Heart-Rate Measurements from Radar Sensor Fusion. Sensors 2021, 21, 1774. [Google Scholar] [CrossRef]
- Mercuri, M.; Lorato, I.R.; Liu, Y.H.; Wieringa, F.; Van Hoof, C.; Torfs, T. Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor. Nat. Electron. 2019, 2, 252–262. [Google Scholar] [CrossRef]
Subject | Gender | Age | Weight | Height | Sleep Habit |
---|---|---|---|---|---|
Subject 1 | F | 24 | 50 | 1.56 | More time in a supine posture |
Subject 2 | M | 23 | 74 | 1.74 | More time in a supine posture, less movement during sleep |
Subject 3 | M | 24 | 70 | 1.67 | More time in a side-lying posture, more movement during sleep |
Subject | Group | Relative Error | Mean Value of HR Reference (bpm) | |||
---|---|---|---|---|---|---|
≤10% | 10–15% | >15% | ||||
Subject 1 | 1 | 74.7% | 16.7% | 8.6% | 54 | 6.3% |
2 | 76.6% | 16.0% | 7.4% | 57 | 6.3% | |
3 | 83.2% | 10.7% | 6.1% | 54 | 5.8% | |
Subject 2 | 4 | 78.7% | 8.5% | 12.8% | 51 | 6.6% |
5 | 89.1% | 7.7% | 3.2% | 61 | 4.2% | |
6 | 82.5% | 9.9% | 7.6% | 60 | 5.2% | |
Subject 3 | 7 | 70.4% | 14.4% | 15.2% | 56 | 7.3% |
8 | 64.8% | 12.5% | 22.7% | 53 | 9.6% | |
9 | 82.9% | 9.8% | 7.3% | 54 | 5.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Ni, X. Noncontact Sleeping Heartrate Monitoring Method Using Continuous-Wave Doppler Radar Based on the Difference Quadratic Sum Demodulation and Search Algorithm. Sensors 2022, 22, 7646. https://doi.org/10.3390/s22197646
Chen X, Ni X. Noncontact Sleeping Heartrate Monitoring Method Using Continuous-Wave Doppler Radar Based on the Difference Quadratic Sum Demodulation and Search Algorithm. Sensors. 2022; 22(19):7646. https://doi.org/10.3390/s22197646
Chicago/Turabian StyleChen, Xiao, and Xuxiang Ni. 2022. "Noncontact Sleeping Heartrate Monitoring Method Using Continuous-Wave Doppler Radar Based on the Difference Quadratic Sum Demodulation and Search Algorithm" Sensors 22, no. 19: 7646. https://doi.org/10.3390/s22197646
APA StyleChen, X., & Ni, X. (2022). Noncontact Sleeping Heartrate Monitoring Method Using Continuous-Wave Doppler Radar Based on the Difference Quadratic Sum Demodulation and Search Algorithm. Sensors, 22(19), 7646. https://doi.org/10.3390/s22197646