Non-Destructive Monitoring of Crop Fresh Weight and Leaf Area with a Simple Formula and a Convolutional Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation Conditions
2.2. Data Collection
2.3. Calculating and Estimating Crop Fresh Weight from the Collected Data
2.4. Estimation of Leaf Area Using a ConvNet
2.5. Deep Learning Computation
2.6. Evaluation of the Monitoring System
3. Results
3.1. Calculation of Crop Fresh Weight
3.2. Estimation Accuracy for the Calculated Fresh Weight
3.3. Accuracy of the Estimated Leaf Area
4. Discussion
4.1. Physiological Comparison of the Two Cultivations
4.2. Estimated Fresh Weight Using the Simple Calculation
4.3. Estimated Fresh Weight Using the Trained Deep Learning Models
4.4. Estimated Leaf Area Using 2D ConvNet
4.5. Improvement Potential of the Monitoring Methodology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, M.R.; Rao, I.M.; Merchant, A. Source-Sink Relationships in Crop Plants and Their Influence on Yield Development and Nutritional Quality. Front. Plant Sci. 2018, 9, 1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonnewald, U.; Fernie, A.R. Next-Generation Strategies for Understanding and Influencing Source–Sink Relations in Crop Plants. Curr. Opin. Plant Biol. 2018, 43, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Mageed, T.A.; Semida, W.M.; Taha, R.S.; Rady, M.M. Effect of Summer-Fall Deficit Irrigation on Morpho-Physiological, Anatomical Responses, Fruit Yield and Water Use Efficiency of Cucumber under Salt Affected Soil. Sci. Hortic. 2018, 237, 148–155. [Google Scholar] [CrossRef]
- Díaz-Pérez, J.C. Bell Pepper (Capsicum annum L.) Grown on Plastic Film Mulches: Effects on Crop Microenvironment, Physiological Attributes, and Fruit Yield. HortScience 2010, 45, 1196–1204. [Google Scholar] [CrossRef] [Green Version]
- Ronga, D.; Francia, E.; Rizza, F.; Badeck, F.-W.; Caradonia, F.; Montevecchi, G.; Pecchioni, N. Changes in Yield Components, Morphological, Physiological and Fruit Quality Traits in Processing Tomato Cultivated in Italy since the 1930′s. Sci. Hortic. 2019, 257, 108726. [Google Scholar] [CrossRef]
- Chen, W.-T.; Yeh, Y.-H.F.; Liu, T.-Y.; Lin, T.-T. An Automated and Continuous Plant Weight Measurement System for Plant Factory. Front. Plant Sci. 2016, 7, 392. [Google Scholar] [CrossRef] [Green Version]
- Helmer, T.; Ehret, D.L.; Bittman, S. CropAssist, an Automated System for Direct Measurement of Greenhouse Tomato Growth and Water Use. Comput. Electron. Agric. 2005, 48, 198–215. [Google Scholar] [CrossRef]
- Lee, J.W.; Son, J.E. Nondestructive and Continuous Fresh Weight Measurements of Bell Peppers Grown in Soilless Culture Systems. Agronomy 2019, 9, 652. [Google Scholar] [CrossRef] [Green Version]
- Jovicich, E.; Cantliffe, D.J.; Stoffella, P.J. Fruit Yield and Quality of Greenhouse-Grown Bell Pepper as Influenced by Density, Container, and Trellis System. HortTechnology 2004, 14, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.H.; Park, J.S.; Son, J.E. Estimating the Actual Transpiration Rate with Compensated Levels of Accumulated Radiation for the Efficient Irrigation of Soilless Cultures of Paprika Plants. Agric. Water Manag. 2014, 135, 9–18. [Google Scholar] [CrossRef]
- Bhagsari, A.S.; Brown, R.H. Leaf Photosynthesis and Its Correlation with Leaf Area. Crop Sci. 1986, 26. [Google Scholar] [CrossRef]
- Marcelis, L.F.M.; Heuvelink, E.; Goudriaan, J. Modelling Biomass Production and Yield of Horticultural Crops: A Review. Sci. Hortic. 1998, 74, 83–111. [Google Scholar] [CrossRef]
- Xu, R.; Dai, J.; Luo, W.; Yin, X.; Li, Y.; Tai, X.; Han, L.; Chen, Y.; Lin, L.; Li, G.; et al. A Photothermal Model of Leaf Area Index for Greenhouse Crops. Agric. For. Meteorol. 2010, 150, 541–552. [Google Scholar] [CrossRef]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Ryu, Y.; Sonnentag, O.; Nilson, T.; Vargas, R.; Kobayashi, H.; Wenk, R.; Baldocchi, D.D. How to Quantify Tree Leaf Area Index in an Open Savanna Ecosystem: A Multi-Instrument and Multi-Model Approach. Agric. For. Meteorol. 2010, 150, 63–76. [Google Scholar] [CrossRef]
- Yan, G.; Hu, R.; Luo, J.; Weiss, M.; Jiang, H.; Mu, X.; Xie, D.; Zhang, W. Review of Indirect Optical Measurements of Leaf Area Index: Recent Advances, Challenges, and Perspectives. Agric. For. Meteorol. 2019, 265, 390–411. [Google Scholar] [CrossRef]
- Lee, J.W.; Kang, W.H.; Moon, T.; Hwang, I.; Kim, D.; Son, J.E. Estimating the Leaf Area Index of Bell Peppers According to Growth Stage Using Ray-Tracing Simulation and a Long Short-Term Memory Algorithm. Hortic. Environ. Biotechnol. 2020, 61, 255–265. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. A Review of the Use of Convolutional Neural Networks in Agriculture. J. Agric. Sci. Technol. 2018, 156, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Patrício, D.I.; Rieder, R. Computer Vision and Artificial Intelligence in Precision Agriculture for Grain Crops: A Systematic Review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean Yield Prediction from UAV Using Multimodal Data Fusion and Deep Learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Moon, T.; Park, J.; Son, J.E. Prediction of the Fruit Development Stage of Sweet Pepper (Capsicum Annum Var. Annuum) by an Ensemble Model of Convolutional and Multilayer Perceptron. Biosyst. Eng. 2021, 210, 171–180. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Xu, D.; Ma, J.; Chen, Y.; Fu, Z. Growth Monitoring of Greenhouse Lettuce Based on a Convolutional Neural Network. Hortic. Res. 2020, 7, 124. [Google Scholar] [CrossRef]
- Shinde, P.P.; Shah, S. A Review of Machine Learning and Deep Learning Applications. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–6. [Google Scholar]
- Yang, B.; Xu, Y. Applications of Deep-Learning Approaches in Horticultural Research: A Review. Hortic. Res. 2021, 8, 123. [Google Scholar] [CrossRef]
- Moon, T.; Lee, J.W.; Son, J.E. Accurate Imputation of Greenhouse Environment Data for Data Integrity Utilizing Two-Dimensional Convolutional Neural Networks. Sensors 2021, 21, 2187. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef] [Green Version]
- Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Long Beach, CA, USA, 2017; Volume 30. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Aloysius, N.; Geetha, M. A Review on Deep Convolutional Neural Networks. In Proceedings of the 2017 IEEE International Conference on Communication and Signal Processing (ICCSP), Tamilnadu, India, 6–8 April 2017; pp. 0588–0592. [Google Scholar]
- Dhillon, A.; Verma, G.K. Convolutional Neural Network: A Review of Models, Methodologies and Applications to Object Detection. Prog. Artif. Intell. 2020, 9, 85–112. [Google Scholar] [CrossRef]
- Easlon, H.M.; Bloom, A.J. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area. Appl. Plant Sci. 2014, 2, 1400033. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 7 July 2015; Bach, F., Blei, D., Eds.; PMLR: Lille, France, 2017; Volume 37, pp. 448–456. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), USENIX Association, Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Marcelis, L.F.M.; Heuvelink, E.; Baan Hofman-Eijer, L.R.; Den Bakker, J.; Xue, L.B. Flower and Fruit Abortion in Sweet Pepper in Relation to Source and Sink Strength. J. Exp. Bot. 2004, 55, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Wubs, A.M.; Heuvelink, E.; Marcelis, L.F.M. Abortion of Reproductive Organs in Sweet Pepper (Capsicum annuum L.): A Review. J. Hortic. Sci. Biotechnol. 2009, 84, 467–475. [Google Scholar] [CrossRef]
- Flexas, J.; Ribas-Carbó, M.; Bota, J.; Galmés, J.; Henkle, M.; Martínez-Cañellas, S.; Medrano, H. Decreased Rubisco Activity during Water Stress Is Not Induced by Decreased Relative Water Content but Related to Conditions of Low Stomatal Conductance and Chloroplast CO2 Concentration. New Phytol. 2006, 172, 73–82. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, Z.; Wang, D.; Shi, Y.; Zhang, Y. Photosynthesis and Winter Wheat Yield Responses to Supplemental Irrigation Based on Measurement of Water Content in Various Soil Layers. Field Crops Res. 2014, 166, 102–111. [Google Scholar] [CrossRef]
- Heathman, G.C.; Cosh, M.H.; Han, E.; Jackson, T.J.; McKee, L.; McAfee, S. Field Scale Spatiotemporal Analysis of Surface Soil Moisture for Evaluating Point-Scale in Situ Networks. Geoderma 2012, 170, 195–205. [Google Scholar] [CrossRef]
- Kang, S.; Van Iersel, M.W.; Kim, J. Plant Root Growth Affects FDR Soil Moisture Sensor Calibration. Sci. Hortic. 2019, 252, 208–211. [Google Scholar] [CrossRef]
- Incrocci, L.; Thompson, R.B.; Fernandez-Fernandez, M.D.; De Pascale, S.; Pardossi, A.; Stanghellini, C.; Rouphael, Y.; Gallardo, M. Irrigation Management of European Greenhouse Vegetable Crops. Agric. Water Manag. 2020, 242, 106393. [Google Scholar] [CrossRef]
- Olle, M.; Ngouajio, M.; Siomos, A. Vegetable Quality and Productivity as Influenced by Growing Medium: A Review. Agriculture 2012, 99, 399–408. [Google Scholar]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Toward a New Generation of Agricultural System Data, Models, and Knowledge Products: State of Agricultural Systems Science. Agric. Syst. 2017, 155, 269–288. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 1. [Google Scholar] [CrossRef]
- Vig, J.; Belinkov, Y. Analyzing the Structure of Attention in a Transformer Language Model. arXiv 2019, arXiv:1906.04284. [Google Scholar]
- Moon, T.; Son, J.E. Knowledge Transfer for Adapting Pre-Trained Deep Neural Models to Predict Different Greenhouse Environments Based on a Low Quantity of Data. Comput. Electron. Agric. 2021, 185, 106136. [Google Scholar] [CrossRef]
- Koenker, R.; Hallock, K.F. Quantile Regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Z.; Kang, Y.; Özdoğan, M. Corn Yield Prediction and Uncertainty Analysis Based on Remotely Sensed Variables Using a Bayesian Neural Network Approach. Remote Sens. Environ. 2021, 259, 112408. [Google Scholar] [CrossRef]
Condition | 2020S | 2020W |
---|---|---|
Cultivation period | 26 February–3 July | 26 August–24 January |
Planting density | 4.08 plants/m2 | 3.06 plants/m2 |
Number of plants | 96 | 84 |
Cultivar | Scirocco | Mavera and Florate |
Topping date | 15 June | 5 December |
Cultivation Period | Root Dry Weight (g/Plant) | Root Dry Weight (g/Slab) | Substrate Weight (g) |
---|---|---|---|
2020S | 82.98 ± 14.04 | 297.27 ± 38.81 | 656.50 ± 30.96 |
2020W | 118.45 ± 23.59 | 355.37 ± 70.77 | 887.20 ± 18.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, T.; Kim, D.; Kwon, S.; Ahn, T.I.; Son, J.E. Non-Destructive Monitoring of Crop Fresh Weight and Leaf Area with a Simple Formula and a Convolutional Neural Network. Sensors 2022, 22, 7728. https://doi.org/10.3390/s22207728
Moon T, Kim D, Kwon S, Ahn TI, Son JE. Non-Destructive Monitoring of Crop Fresh Weight and Leaf Area with a Simple Formula and a Convolutional Neural Network. Sensors. 2022; 22(20):7728. https://doi.org/10.3390/s22207728
Chicago/Turabian StyleMoon, Taewon, Dongpil Kim, Sungmin Kwon, Tae In Ahn, and Jung Eek Son. 2022. "Non-Destructive Monitoring of Crop Fresh Weight and Leaf Area with a Simple Formula and a Convolutional Neural Network" Sensors 22, no. 20: 7728. https://doi.org/10.3390/s22207728
APA StyleMoon, T., Kim, D., Kwon, S., Ahn, T. I., & Son, J. E. (2022). Non-Destructive Monitoring of Crop Fresh Weight and Leaf Area with a Simple Formula and a Convolutional Neural Network. Sensors, 22(20), 7728. https://doi.org/10.3390/s22207728