Setup and Analysis of a Mid-Infrared Stand-Off System to Detect Traces of Explosives on Fabrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Sample Preparation and Measurement Procedure
2.3. Data Processing for Wavelength Calibration
3. Results and Discussion
3.1. Substance Detection
3.2. Detection on Fabrics and Influences on Spectral Shape
3.3. Normalization of Spectra
3.3.1. Normalization by Background Material
3.3.2. Normalization by Reference Detector
3.3.3. Normalization by Diffuse Reflector
3.4. Removal of Atmospheric Influences
3.5. PCA for Measured Substances
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauer, C.; Sharma, A.; Willer, U.; Burgmeier, J.; Braunschweig, B.; Schade, W.; Blaser, S.; Hvozdara, L.; Müller, A.; Holl, G. Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives. Appl. Phys. B 2008, 92, 327–333. [Google Scholar] [CrossRef]
- Syage, J.A.; Hanold, K.A. Mass Spectrometry for Security Screening of Explosives. In Trace Chemical Sensing of Explosives; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; Chapter 11; pp. 219–244. [Google Scholar] [CrossRef]
- Glackin, J.M.E.; Gillanders, R.N.; Eriksson, F.; Fjällgren, M.; Engblom, J.; Mohammed, S.; Samuel, I.D.W.; Turnbull, G.A. Explosives detection by swabbing for improvised explosive devices. Analyst 2020, 145, 7956–7963. [Google Scholar] [CrossRef] [PubMed]
- Huri, M.A.M.; Ahmad, U.K.; Ibrahim, R.; Omar, M. A REVIEW OF EXPLOSIVE RESIDUE DETECTION FROM FORENSIC CHEMISTRY PERSPECTIVE. Malays. J. Anal. Sci. 2017, 21, 267–282. [Google Scholar] [CrossRef]
- Narlagiri, L.M.; Bharati, M.S.S.; Beeram, R.; Banerjee, D.; Soma, V.R. Recent trends in laser-based standoff detection of hazardous molecules. TrAC Trends Anal. Chem. 2022, 153, 116645. [Google Scholar] [CrossRef]
- Breshike, C.J.; Kendziora, C.A.; Finton, D.; Furstenberg, R.; Huffman, T.; McGill, R.A. A system for rapid chemical identification based on infrared signatures. In Proceedings of the Next-Generation Spectroscopic Technologies XIV, Online, 12–17 April 2021. [Google Scholar] [CrossRef]
- Li, J.; Yu, Z.; Du, Z.; Ji, Y.; Liu, C. Standoff Chemical Detection Using Laser Absorption Spectroscopy: A Review. Remote Sens. 2020, 12, 2771. [Google Scholar] [CrossRef]
- Galán-Freyle, N.J.; Pacheco-Londõno, L.C.; Figueroa-Navedo, A.M.; Hernandez-Rivera, S.P. Standoff Detection of Highly Energetic Materials Using Laser-Induced Thermal Excitation of Infrared Emission. Appl. Spectrosc. 2015, 69, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Galán-Freyle, N.J.; Ospina-Castro, M.L.; Medina-González, A.R.; Villarreal-González, R.; Hernández-Rivera, S.P.; Pacheco-Londoño, L.C. Artificial Intelligence Assisted Mid-Infrared Laser Spectroscopy In Situ Detection of Petroleum in Soils. Appl. Sci. 2020, 10, 1319. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Londoño, L.C.; Warren, E.; Galán-Freyle, N.J.; Villarreal-González, R.; Aparicio-Bolaño, J.A.; Ospina-Castro, M.L.; Shih, W.C.; Hernández-Rivera, S.P. Mid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial Intelligence. Appl. Sci. 2020, 10, 4178. [Google Scholar] [CrossRef]
- Ortega-Zuñiga, C.A.; Galán-Freyle, N.Y.; Castro-Suarez, J.R.; Aparicio-Bolaño, J.; Pacheco-Londoño, L.C.; Hernández-Rivera, S.P. Dependence of detection limits on angular alignment, substrate type and surface concentration in active mode standoff IR. In Proceedings of the Active and Passive Signatures IV, Baltimore, MD, USA, 29 April–3 May 2013. [Google Scholar]
- Wilsenack, F.; Lorenzen, A.; Awanzino, C.; Grisard, A.; Larat, C.; Papillon, D.; Lallier, E.; Tholl, H.D.; Raab, M.; Brygo, F.; et al. First results of a QCL-OPA based standoff system, for detecting hazardous substances in the IR-fingerprint domain. In Proceedings of the Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX, Orlando, FL, USA, 15–19 April 2018. [Google Scholar]
- Witinski, M.F.; Blanchard, R.; Pfluegl, C.; Diehl, L.; Li, B.; Krishnamurthy, K.; Pein, B.C.; Azimi, M.; Chen, P.; Ulu, G.; et al. Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 65 to 11 μm. Opt. Express 2018, 26, 12159. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Liu, H.; Xie, J. 100-m standoff detection of a QCL-induced photo-vibrational signal on explosives using a laser vibrometer. Opt. Lasers Eng. 2018, 107, 241–246. [Google Scholar] [CrossRef]
- Castro-Suarez, J.R.; Hidalgo-Santiago, M.; Hernández-Rivera, S.P. Detection of Highly Energetic Materials on Non-Reflective Substrates Using Quantum Cascade Laser Spectroscopy. Appl. Spectrosc. 2015, 69, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Breshike, C.J.; Kendziora, C.A.; Furstenberg, R.; Nguyen, V.; Kusterbeck, A.; McGill, R.A. Infrared backscatter imaging spectroscopy of trace analytes at standoff. J. Appl. Phys. 2019, 125, 104901. [Google Scholar] [CrossRef]
- Caffey, D.; Radunsky, M.B.; Cook, V.; Weida, M.; Buerki, P.R.; Crivello, S.; Day, T. Recent results from broadly tunable external cavity quantum cascade lasers. In Proceedings of the Novel In-Plane Semiconductor Lasers X, San Francisco, CA, USA, 22–27 January 2011. [Google Scholar]
- Ghorbani, R.; Schmidt, F.M. Real-time breath gas analysis of CO and CO2 using an EC-QCL. Appl. Phys. B 2017, 123, 144. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zheng, K.; Song, F.; Tittel, F.K.; Zheng, C. Mid-Infrared Absorption Spectroscopy for Gas Sensing and Application. In Proceedings of the 2020 IEEE 5th Optoelectronics Global Conference (OGC), Shenzhen, China, 7–11 September 2020. [Google Scholar] [CrossRef]
- Pristera, F.; Halik, M.; Castelli, A.; Fredericks, W. Analysis of Explosives Using Infrared Spectroscopy. Anal. Chem. 1960, 32, 495–508. [Google Scholar] [CrossRef]
- Murphy, C.P.; Kerekes, J.P.; Wood, D.A.; Goyal, A.K. Practical model for improved classification of trace chemical residues on surfaces in active spectroscopic measurements. Opt. Eng. 2020, 59, 092012. [Google Scholar] [CrossRef]
- Phillips, M.C.; Suter, J.D.; Bernacki, B.E.; Johnson, T.J. Challenges of infrared reflective spectroscopy of solid-phase explosives and chemicals on surfaces. In Proceedings of the Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII, Baltimore, MD, USA, 23–27 April 2012. [Google Scholar]
- Suter, J.D.; Bernacki, B.; Phillips, M.C. Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers. Appl. Phys. B 2012, 108, 965–974. [Google Scholar] [CrossRef]
- Schnürer, F.; Ulrich, C.; Chirico, R.; Moon, R.; Guicheteau, J.; Hung, K.C. Final results of NATO SET-237 "Printed Standards for Stand-off Detection“ and future developments. In Proceedings of the Counterterrorism, Crime Fighting, Forensics, and Surveillance Technologies V, Online, 13–18 September 2021. [Google Scholar]
- Furstenberg, R.; Kendziora, C.A.; Papantonakis, M.R.; Nguyen, V.; McGill, R.A. Characterization and control of tunable quantum cascade laser beam parameters for stand-off spectroscopy. In Proceedings of the Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVII, Baltimore, MD, USA, 17–21 April 2016. [Google Scholar]
- Michel, A.P.M.; Morrison, A.E.; Colson, B.C.; Pardis, W.A.; Moya, X.A.; Harb, C.C.; White, H.K. Quantum cascade laser-based reflectance spectroscopy: A robust approach for the classification of plastic type. Opt. Express 2020, 28, 17741–17756. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Navedo, A.M.; Ruiz-Caballero, J.L.; Pacheco-Londoño, L.C.; Hernández-Rivera, S.P. Characterization of α- and β-RDX Polymorphs in Crystalline Deposits on Stainless Steel Substrates. Cryst. Growth Des. 2016, 16, 3631–3638. [Google Scholar] [CrossRef]
- Ruiz-Caballero, J.L.; Blanco-Riveiro, L.A.; Ramirez-Marrero, I.A.; Perez-Almodovar, L.A.; Colon-Mercado, A.M.; Castro-Suarez, J.R.; Pacheco-Londoño, L.C.; Hernandez-Rivera, S.P. Enhanced RDX Detection Studies on Various Types of Substrates via Tunable Quantum Cascade Laser Spectrometer Coupled with Grazing Angle Probe. IOP Conf. Ser. Mater. Sci. Eng. 2019, 519, 012007. [Google Scholar] [CrossRef]
- Pacheco-Londoño, L.C.; Castro-Suarez, J.R.; Galán-Freyle, N.J.; Figueroa-Navedo, A.M.; Ruiz-Caballero, J.L.; Infante-Castillo, R.; Hernández-Rivera, S.P. Mid-Infrared Laser Spectroscopy Applications I: Detection of Traces of High Explosives on Reflective and Matte Substrates. In Infrared Spectroscopy-Principles, Advances, and Applications; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Beleites, C.; Neugebauer, U.; Bocklitz, T.; Krafft, C.; Popp, J. Sample size planning for classification models. Anal. Chim. Acta 2013, 760, 25–33. [Google Scholar] [CrossRef] [PubMed]
Background Materials (BGM) | Explosives (E) | Harmless Substances (HS) |
---|---|---|
light-blue jeans | RDX | acetylsalicylic acid |
dark-blue jeans | TNT | cinnamic acid |
red canvas | PETN | paracetamol |
black synthetic fiber | ammonium nitrate | sucrose |
brown leather | ascorbic acid | |
dark-blue leatherette | malic acid | |
citric acid | ||
2 × (6 Background Materials × (4 Explosives + 7 Harmless Agents)) = 132 Samples | ||
2 Positions × 6 Angles × 5 Scans = 60 Measurements | ||
132 Samples × 60 Measurements = 7920 Spectra |
Total Amount of RDX (μg) | Detected Amount (μg) |
---|---|
50 | 1.5 |
100 | 3.0 |
250 | 7.5 |
1000 | 30 |
Signal Position | ||||
---|---|---|---|---|
Method (Section) | 940/cm | 1090/cm | 1180/cm | 1210/cm |
Background (Section 3.3.1) | 2.10 | 2.03 | 1.80 | 1.56 |
Reference (Section 3.3.2) | 2.26 | 2.88 | 1.98 | 1.47 |
Diff. reflector (Section 3.3.3) | 2.72 | 2.96 | 2.10 | 1.51 |
Not normalized | 2.25 | 2.73 | 2.04 | 1.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreier, L.B.; Kölbl, C.; Jeuk, V.; Beleites, C.; Köhntopp, A.; Duschek, F. Setup and Analysis of a Mid-Infrared Stand-Off System to Detect Traces of Explosives on Fabrics. Sensors 2022, 22, 7839. https://doi.org/10.3390/s22207839
Dreier LB, Kölbl C, Jeuk V, Beleites C, Köhntopp A, Duschek F. Setup and Analysis of a Mid-Infrared Stand-Off System to Detect Traces of Explosives on Fabrics. Sensors. 2022; 22(20):7839. https://doi.org/10.3390/s22207839
Chicago/Turabian StyleDreier, Lisa B., Christoph Kölbl, Vincent Jeuk, Claudia Beleites, Anja Köhntopp, and Frank Duschek. 2022. "Setup and Analysis of a Mid-Infrared Stand-Off System to Detect Traces of Explosives on Fabrics" Sensors 22, no. 20: 7839. https://doi.org/10.3390/s22207839
APA StyleDreier, L. B., Kölbl, C., Jeuk, V., Beleites, C., Köhntopp, A., & Duschek, F. (2022). Setup and Analysis of a Mid-Infrared Stand-Off System to Detect Traces of Explosives on Fabrics. Sensors, 22(20), 7839. https://doi.org/10.3390/s22207839