Modulating Heart Rate Variability through Deep Breathing Exercises and Transcutaneous Auricular Vagus Nerve Stimulation: A Study in Healthy Participants and in Patients with Rheumatoid Arthritis or Systemic Lupus Erythematosus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup
2.3. Deep Breathing
2.4. Transcutaneous Auricular Vagus Nerve Stimulation
2.5. Heart-Rate Variability
2.5.1. ECG Recording
2.5.2. Parameter Extraction
2.6. Statistical Analysis
3. Results
3.1. Results: Healthy Participants
3.1.1. Effects of DB and taVNS
3.1.2. Effect of DB Compared to taVNS
3.2. Results: Patients with RA and SLE
3.2.1. Effects of DB and taVNS
3.2.2. Effect of DB Compared to taVNS
4. Discussion
4.1. Limitations
4.2. Implications and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scott, D.L.; Wolfe, F.; Huizinga, T.W. Rheumatoid arthritis. Lancet 2010, 376, 1094–1108. [Google Scholar] [CrossRef]
- Tsokos, G.C. Systemic Lupus Erythematosus. N. Engl. J. Med. 2011, 365, 2110–2121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matcham, F.; Scott, I.C.; Rayner, L.; Hotopf, M.; Kingsley, G.H.; Norton, S.; Scott, D.L.; Steer, S. The impact of rheumatoid arthritis on quality-of-life assessed using the SF-36: A systematic review and meta-analysis. Semin. Arthritis Rheum. 2014, 44, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdany, J.; Yelin, E. Health-related quality of life and employment among persons with systemic lupus erythematosus. Rheum. Dis. Clin. 2010, 36, 15–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundkvist, J.; Kastäng, F.; Kobelt, G. The burden of rheumatoid arthritis and access to treatment: Health burden and costs. Eur. J. Health Econ. 2008, 8, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aletaha, D.; Smolen, J.S. Diagnosis and management of rheumatoid arthritis: A review. JAMA 2018, 320, 1360–1372. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Tziolos, N.; Bertsias, G.; Boumpas, D.T. Update on the diagnosis and management of systemic lupus erythematosus. Ann. Rheum. Dis. 2021, 80, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhou, H.; Liu, L. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review. Eur. J. Med. Chem. 2018, 158, 502–516. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.; Pfeiffer-Jensen, M.; Drewes, A.; Farmer, A.; Deleuran, B.; Stengaard-Pedersen, K.; Brock, B.; Brock, C. Vagal influences in rheumatoid arthritis. Scand. J. Rheumatol. 2018, 47, 1–11. [Google Scholar] [CrossRef]
- Koopman, F.; Van Maanen, M.; Vervoordeldonk, M.J.; Tak, P. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J. Intern. Med. 2017, 282, 64–75. [Google Scholar] [CrossRef]
- Bonaz, B.; Sinniger, V.; Pellissier, S. Anti-inflammatory properties of the vagus nerve: Potential therapeutic implications of vagus nerve stimulation. J. Physiol. 2016, 594, 5781–5790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojanovich, L.; Milovanovich, B.; De Luka, S.; Popovich-Kuzmanovich, D.; Bisenich, V.; Djukanovich, B.; Randjelovich, T.; Krotin, M. Cardiovascular autonomic dysfunction in systemic lupus, rheumatoid arthritis, primary Sjögren syndrome and other autoimmune diseases. Lupus 2007, 16, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Koopman, F.; Tang, M.; Vermeij, J.; De Hair, M.; Choi, I.; Vervoordeldonk, M.; Gerlag, D.; Karemaker, J.; Tak, P. Autonomic dysfunction precedes development of rheumatoid arthritis: A prospective cohort study. EBioMedicine 2016, 6, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, P.K.; Bosner, M.S.; Kleiger, R.E.; Conger, B.M. Heart rate variability: A measure of cardiac autonomic tone. Am. Heart J. 1994, 127, 1376–1381. [Google Scholar] [CrossRef]
- Machetanz, K.; Berelidze, L.; Guggenberger, R.; Gharabaghi, A. Transcutaneous auricular vagus nerve stimulation and heart rate variability: Analysis of parameters and targets. Auton. Neurosci. 2021, 236, 102894. [Google Scholar] [CrossRef]
- Széles, J.C.; Kampusch, S.; Thürk, F.; Clodi, C.; Thomas, N.; Fichtenbauer, S.; Schwanzer, C.; Schwarzenberger, S.; Neumayer, C.; Kaniusas, E. Bursted auricular vagus nerve stimulation alters heart rate variability in healthy subjects. Physiol. Meas. 2021, 42, 105002. [Google Scholar] [CrossRef]
- Antonino, D.; Teixeira, A.L.; Maia-Lopes, P.M.; Souza, M.C.; Sabino-Carvalho, J.L.; Murray, A.R.; Deuchars, J.; Vianna, L.C. Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: A randomized placebo-controlled trial. Brain Stimul. 2017, 10, 875–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Couck, M.; Cserjesi, R.; Caers, R.; Zijlstra, W.; Widjaja, D.; Wolf, N.; Luminet, O.; Ellrich, J.; Gidron, Y. Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Auton. Neurosci. 2017, 203, 88–96. [Google Scholar] [CrossRef]
- Borges, U.; Laborde, S.; Raab, M. Influence of transcutaneous vagus nerve stimulation on cardiac vagal activity: Not different from sham stimulation and no effect of stimulation intensity. PLoS ONE 2019, 14, e0223848. [Google Scholar] [CrossRef] [Green Version]
- Gauthey, A.; Morra, S.; Van de Borne, P.; Deriaz, D.; Maes, N.; Le Polain De Waroux, J.B. Sympathetic effect of auricular transcutaneous vagus nerve stimulation on healthy subjects: A crossover controlled clinical trial comparing vagally mediated and active control stimulation using microneurography. Front. Physiol. 2020, 11, 599896. [Google Scholar] [CrossRef] [PubMed]
- Wolf, V.; Kühnel, A.; Teckentrup, V.; Koenig, J.; Kroemer, N.B. Does transcutaneous auricular vagus nerve stimulation affect vagally mediated heart rate variability? A living and interactive Bayesian meta-analysis. Psychophysiology 2021, 58, e13933. [Google Scholar] [CrossRef] [PubMed]
- Sclocco, R.; Garcia, R.G.; Kettner, N.W.; Fisher, H.P.; Isenburg, K.; Makarovsky, M.; Stowell, J.A.; Goldstein, J.; Barbieri, R.; Napadow, V. Stimulus frequency modulates brainstem response to respiratory-gated transcutaneous auricular vagus nerve stimulation. Brain Stimul. 2020, 13, 970–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, A.M.; D’Agostini, M.; Verkuil, B.; Van Diest, I. Moving beyond belief: A narrative review of potential biomarkers for transcutaneous vagus nerve stimulation. Psychophysiology 2020, 57, e13571. [Google Scholar] [CrossRef] [PubMed]
- Brock, C.; Brock, B.; Aziz, Q.; Møller, H.; Pfeiffer Jensen, M.; Drewes, A.; Farmer, A. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha. Neurogastroenterol. Motil. 2017, 29, e12999. [Google Scholar] [CrossRef]
- Lerman, I.; Hauger, R.; Sorkin, L.; Proudfoot, J.; Davis, B.; Huang, A.; Lam, K.; Simon, B.; Baker, D.G. Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: A randomized, blinded, healthy control pilot trial. Neuromodul. Technol. Neural Interface 2016, 19, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Kox, M.; van Eijk, L.T.; Verhaak, T.; Frenzel, T.; Kiers, H.D.; Gerretsen, J.; van der Hoeven, J.G.; Kornet, L.; Scheiner, A.; Pickkers, P. Transvenous vagus nerve stimulation does not modulate the innate immune response during experimental human endotoxemia: A randomized controlled study. Arthritis Res. Ther. 2015, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Koopman, F.A.; Chavan, S.S.; Miljko, S.; Grazio, S.; Sokolovic, S.; Schuurman, P.R.; Mehta, A.D.; Levine, Y.A.; Faltys, M.; Zitnik, R.; et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2016, 113, 8284–8289. [Google Scholar] [CrossRef] [Green Version]
- Aranow, C.; Atish-Fregoso, Y.; Lesser, M.; Mackay, M.; Anderson, E.; Chavan, S.; Zanos, T.P.; Datta-Chaudhuri, T.; Bouton, C.; Tracey, K.J.; et al. Transcutaneous auricular vagus nerve stimulation reduces pain and fatigue in patients with systemic lupus erythematosus: A randomised, double-blind, sham-controlled pilot trial. Ann. Rheum. Dis. 2021, 80, 203–208. [Google Scholar] [CrossRef]
- Drewes, A.; Brock, C.; Rasmussen, S.; Møller, H.; Brock, B.; Deleuran, B.; Farmer, A.; Pfeiffer-Jensen, M. Short-term transcutaneous non-invasive vagus nerve stimulation may reduce disease activity and pro-inflammatory cytokines in rheumatoid arthritis: Results of a pilot study. Scand. J. Rheumatol. 2021, 50, 20–27. [Google Scholar] [CrossRef]
- Bhagat, O.L.; Kharya, C.; Jaryal, A.; Deepak, K.K. Acute effects on cardiovascular oscillations during controlled slow yogic breathing. Indian J. Med. Res. 2017, 145, 503. [Google Scholar]
- De Souza, L.A.; Ferreira, J.B.; Schein, A.S.D.O.; Dartora, D.R.; Casali, A.G.; Scassola, C.M.C.; Tobaldini, E.; Montano, N.; Guzzetti, S.; Porta, A.; et al. Optimization of vagal stimulation protocol based on spontaneous breathing rate. Front. Physiol. 2018, 9, 1341. [Google Scholar] [CrossRef]
- Twal, W.O.; Wahlquist, A.E.; Balasubramanian, S. Yogic breathing when compared to attention control reduces the levels of pro-inflammatory biomarkers in saliva: A pilot randomized controlled trial. BMC Complement. Altern. Med. 2016, 16, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soer, R.; Six Dijkstra, M.W.; Bieleman, H.J.; Oosterveld, F.G.; Rijken, N.H. Influence of respiration frequency on heart rate variability parameters: A randomized cross-sectional study. J. Back Musculoskelet. Rehabil. 2021, 34, 1063–1068. [Google Scholar] [CrossRef]
- Sharpe, E.; Lacombe, A.; Sadowski, A.; Phipps, J.; Heer, R.; Rajurkar, S.; Hanes, D.; Jindal, R.D.; Bradley, R. Investigating components of pranayama for effects on heart rate variability. J. Psychosom. Res. 2021, 148, 110569. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Mavai, M.; Bhagat, O.L.; Murugesh, M.; Sircar, S. Slow deep breathing increases pain-tolerance and modulates cardiac autonomic nervous system. Indian J. Physiol. Pharmacol. 2017, 61, 107–113. [Google Scholar]
- Rovsing, C.; Rovsing, H.; Liboriussen, C.H.; Jensen, M.K.; Andersen, S.S.; Andersen, S.S.; Kristensen, S.; Jochumsen, M. Deep Breathing Increases Heart Rate Variability in Patients With Rheumatoid Arthritis and Systemic Lupus Erythematosus. J. Clin. Rheumatol. 2021, 27, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Liboriussen, C.H.; Andersen, S.S.; Andersen, S.S.; Jensen, M.K.; Jochumsen, M.; Kristensen, S. Investigating the Dose-Response Relationship between Deep Breathing and Heart Rate Variability in Healthy Participants and Across-Days Reliability in Patients with Rheumatoid Arthritis and Systemic Lupus Erythematosus. Sensors 2022, 22, 6849. [Google Scholar] [CrossRef]
- Russo, M.A.; Santarelli, D.M.; O’Rourke, D. The physiological effects of slow breathing in the healthy human. Breathe 2017, 13, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Addorisio, M.E.; Imperato, G.H.; de Vos, A.F.; Forti, S.; Goldstein, R.S.; Pavlov, V.A.; van der Poll, T.; Yang, H.; Diamond, B.; Tracey, K.J.; et al. Investigational treatment of rheumatoid arthritis with a vibrotactile device applied to the external ear. Bioelectron. Med. 2019, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Carandina, A.; Rodrigues, G.D.; Di Francesco, P.; Filtz, A.; Bellocchi, C.; Furlan, L.; Carugo, S.; Montano, N.; Tobaldini, E. Effects of transcutaneous auricular vagus nerve stimulation on cardiovascular autonomic control in health and disease. Auton. Neurosci. 2021, 236, 102893. [Google Scholar] [CrossRef]
- Koopman, F.A.; Schuurman, P.R.; Vervoordeldonk, M.J.; Tak, P. Vagus nerve stimulation: A new bioelectronics approach to treat rheumatoid arthritis? Best Pract. Res. Clin. Rheumatol. 2014, 28, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Kox, M.; Pickkers, P. Modulation of the innate immune response through the vagus nerve. Nephron 2015, 131, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Das, U.N. Can vagus nerve stimulation halt or ameliorate rheumatoid arthritis and lupus? Lipids Health Dis. 2011, 10, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huston, J.M.; Tracey, K.J. The pulse of inflammation: Heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J. Intern. Med. 2011, 269, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botha, C.; Farmer, A.D.; Nilsson, M.; Brock, C.; Gavrila, A.D.; Drewes, A.M.; Knowles, C.H.; Aziz, Q. Preliminary report: Modulation of parasympathetic nervous system tone influences oesophageal pain hypersensitivity. Gut 2015, 64, 611–617. [Google Scholar] [CrossRef]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- Vollmer, M. HRVTool—An Open-Source Matlab Toolbox for Analyzing Heart Rate Variability. In Proceedings of the 2019 Computing in Cardiology (CinC), Singapore, 8–11 September 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Clancy, J.A.; Mary, D.A.; Witte, K.K.; Greenwood, J.P.; Deuchars, S.A.; Deuchars, J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014, 7, 871–877. [Google Scholar] [CrossRef]
- Agelink, M.W.; Malessa, R.; Baumann, B.; Majewski, T.; Akila, F.; Zeit, T.; Ziegler, D. Standardized tests of heart rate variability: Normal ranges obtained from 309 healthy humans, and effects of age, gender, and heart rate. Clin. Auton. Res. 2001, 11, 99–108. [Google Scholar] [CrossRef]
- Diedrich, A.; Urechie, V.; Shiffer, D.; Rigo, S.; Minonzio, M.; Cairo, B.; Smith, E.C.; Okamoto, L.E.; Barbic, F.; Bisoglio, A.; et al. Transdermal auricular vagus stimulation for the treatment of postural tachycardia syndrome. Auton. Neurosci. 2021, 236, 102886. [Google Scholar] [CrossRef]
- Brock, C.; Rasmussen, S.; Drewes, A.; Møller, H.; Brock, B.; Deleuran, B.; Farmer, A.; Pfeiffer-Jensen, M. Vagal nerve stimulation-modulation of the anti-inflammatory response and clinical outcome in psoriatic arthritis or ankylosing spondylitis. Mediat. Inflamm. 2021, 2021, 9933532. [Google Scholar] [CrossRef] [PubMed]
- Venborg, J.; Wegeberg, A.M.; Kristensen, S.; Brock, B.; Brock, C.; Pfeiffer-Jensen, M. The Effect of Transcutaneous Vagus Nerve Stimulation in Patients with Polymyalgia Rheumatica. Pharmaceuticals 2021, 14, 1166. [Google Scholar] [CrossRef] [PubMed]
- Peuker, E.T.; Filler, T.J. The nerve supply of the human auricle. Clin. Anat. 2002, 15, 35–37. [Google Scholar] [CrossRef]
- Mietus, J.; Peng, C.; Henry, I.; Goldsmith, R.; Goldberger, A. The pNNx files: Re-examining a widely used heart rate variability measure. Heart 2002, 88, 378–380. [Google Scholar] [CrossRef] [Green Version]
- Holman, A.J.; Ng, E. Heart rate variability predicts anti-tumor necrosis factor therapy response for inflammatory arthritis. Auton. Neurosci. 2008, 143, 58–67. [Google Scholar] [CrossRef] [PubMed]
Demographic Data | Healthy Participants (n = 42) | Patients with RA or SLE (n = 52) |
---|---|---|
Age (years) | 28 ± 9 | 57 ± 13 |
Sex | Male = 23 (55%) | Male = 12 (23%) |
Female = 19 (45%) | Female = 40 (77 %) | |
BMI (kg/m2) | 23.1 ± 5.1 | 26.2 ± 4.0 |
BP (mmHG) | ||
Systolic | 123 ± 13 | 130 ± 19 |
Diastolic | 76 ± 8 | 81 ± 10 |
Patient Disease Characteristics | RA (n = 47) | SLE (n = 5) |
DAS28-CRP (RA) or SLEDAI (SLE) | 2.5 ± 1.1 | 4 ± 4 |
CDAI (RA) or SLAQ (SLE) | 6.5 ± 7.6 | 10.0 ± 11.3 |
MDHAQ | 0.5 ± 0.8 | 0.2 ± 0.4 |
CRP (mg/L) | 5.8 ± 10.4 | 2.7 ± 2.0 |
Years since diagnosis | 13 ± 10 | 7 ± 7 |
Treatment | ||
csDMARD | n = 38 | n = 5 |
Prednisolone | n = 0 | n = 1 |
bDMARD | n = 28 | n = 1 |
Test Statistics | B_P1 | B_P2 | B_P3 | P1_P2 | P1_P3 | P2_P3 | |
---|---|---|---|---|---|---|---|
SDNN | |||||||
taVNS | F(3,123) = 4.11, p = 0.008 * | p = 0.010 *↑ | p = 0.822 | p = 0.054 | p = 0.006 *↓ | p = 0.526 | p = 0.026 *↑ |
DB | F(3,123) = 11.01, p < 0.001 * | p < 0.001 *↑ | p < 0.001 *↑ | p = 0.005 *↑ | p = 0.054 | p = 0.013 *↓ | p = 0.298 |
RMSSD | |||||||
taVNS | F(3,123) = 2.00, p = 0.121 | p = 0.435 | p = 0.571 | p = 0.039 #↑ | p = 0.908 | p = 0.091 | p = 0.072 |
DB | F(2.5,103.6) = 3.04, p = 0.040 * | p = 0.158 | p = 0.009 *↑ | p = 0.023 *↑ | p = 0.308 | p = 0.515 | p = 0.472 |
PNN50 | |||||||
taVNS | F(3,123) = 2.19, p = 0.093 | p = 0.156 | p = 0.493 | p = 0.033 #↑ | p = 0.588 | p = 0.205 | p = 0.083 |
DB | F(3,123) = 3.18, p = 0.026 * | p = 0.827 | p = 0.014 *↑ | p = 0.078 | p = 0.024 *↑ | p = 0.113 | p = 0.290 |
Test Statistics | B_P1 | B_P2 | B_P3 | P1_P2 | P1_P3 | P2_P3 | |
---|---|---|---|---|---|---|---|
SDNN | |||||||
taVNS | F(3,153) = 19.15, p < 0.001 * | p < 0.001 *↑ | p < 0.001 *↑ | p < 0.001 *↑ | p = 0.473 | p = 0.295 | p = 0.692 |
DB | F(2.7,136.5) = 15.71, p < 0.001 * | p < 0.001 *↑ | p < 0.001 *↑ | p < 0.001 *↑ | p = 0.853 | p = 0.264 | p = 0.196 |
RMSSD | |||||||
taVNS | F(2.3,118.6) = 8.22, p < 0.001 * | p = 0.008 *↑ | p = 0.008 *↑ | p < 0.001 *↑ | p = 0.632 | p = 0.023 *↑ | p = 0.024 *↑ |
DB | F(3,153) = 6.42, p < 0.001 * | p = 0.018 *↑ | p < 0.001 *↑ | p < 0.001 *↑ | p = 0.283 | p = 0.328 | p = 0.892 |
PNN50 | |||||||
taVNS | F(2.4,122.6) = 7.40, p < 0.001 * | p = 0.037 *↑ | p = 0.012 *↑ | p < 0.001 *↑ | p = 0.373 | p = 0.012 *↑ | p = 0.030 *↑ |
DB | F(3,153) = 6.53, p < 0.001 * | p = 0.009 *↑ | p < 0.001 *↑ | p < 0.001 *↑ | p = 0.183 | p = 0.442 | p = 0.572 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, M.K.; Andersen, S.S.; Andersen, S.S.; Liboriussen, C.H.; Kristensen, S.; Jochumsen, M. Modulating Heart Rate Variability through Deep Breathing Exercises and Transcutaneous Auricular Vagus Nerve Stimulation: A Study in Healthy Participants and in Patients with Rheumatoid Arthritis or Systemic Lupus Erythematosus. Sensors 2022, 22, 7884. https://doi.org/10.3390/s22207884
Jensen MK, Andersen SS, Andersen SS, Liboriussen CH, Kristensen S, Jochumsen M. Modulating Heart Rate Variability through Deep Breathing Exercises and Transcutaneous Auricular Vagus Nerve Stimulation: A Study in Healthy Participants and in Patients with Rheumatoid Arthritis or Systemic Lupus Erythematosus. Sensors. 2022; 22(20):7884. https://doi.org/10.3390/s22207884
Chicago/Turabian StyleJensen, Mette Kjeldsgaard, Sally Søgaard Andersen, Stine Søgaard Andersen, Caroline Hundborg Liboriussen, Salome Kristensen, and Mads Jochumsen. 2022. "Modulating Heart Rate Variability through Deep Breathing Exercises and Transcutaneous Auricular Vagus Nerve Stimulation: A Study in Healthy Participants and in Patients with Rheumatoid Arthritis or Systemic Lupus Erythematosus" Sensors 22, no. 20: 7884. https://doi.org/10.3390/s22207884
APA StyleJensen, M. K., Andersen, S. S., Andersen, S. S., Liboriussen, C. H., Kristensen, S., & Jochumsen, M. (2022). Modulating Heart Rate Variability through Deep Breathing Exercises and Transcutaneous Auricular Vagus Nerve Stimulation: A Study in Healthy Participants and in Patients with Rheumatoid Arthritis or Systemic Lupus Erythematosus. Sensors, 22(20), 7884. https://doi.org/10.3390/s22207884